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Object detection

* Production lines in factories
e Self driving car

* Drones

e Humanoid robots

* etc.



CNN architectures

input feature maps =




CNN architectures

* Alexnet, Zfnet

* VGG-16, VGG-19
* Resnet

* Inception

* Inception resnet
* Nasnet



Object detection networks

° r-cnn
e fast and faster r-cnn
* yolo

* ssd

* mask r-cnn



Object detection architectures
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Experiments
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Experiments

avg. avg.
N inference  |inference porteable
N training |N MAP@ |total |time pre- time post- |to
network model classes |steps |epochs|mAP |.50loU [loss |quantization|quantization |Android
faster_rcnn_inception_v2 1 3000 48| 0.554| 0.972| 0.200]- - no
ssd_mobilenet_v1 coco 1 3000 48] 0.243| 0.687, 4.749|175ms 130ms yes
ssd_mobilenet_v1 coco 3 3000 110] 0.048| 0.226| 9.704|- 121ms yes
ssd_mobilenet_v1 coco 3/ 12000 440| 0.507| 0.970, 3.143|- 120ms yes




Compression of object detection networks
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Compression of object detection networks

* Quantization

* Pruning

e K-means clustering

* Dimensionality reduction of filters

 All of these methods with and without retraining



Quantization - activations sparsity

- histogram analysis
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Quantization - 3D, 4D
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Quantization - K-means clustering
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Pruning

Algorithm 1 Pruning algorithm based on random hill climbing
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Input: number of buckets_to which_hist_ is divided

: Imput: drop_in accuracy_ threshold
: compute_ hist_coeff_of all_layers

layer = random_or_priortized_choose_layer_for_pruning()

: for number_of iterations do

if (top_l-baseline) <
drop_in_accuracy_thresh then
prune_next_bucket from_ hist()
else
reverse_pruning_ bucket_from_ hist()
end if
fitness = compute _new_fitness()
topl = compute_accuracyi()
if fitness < best fitness then
next_solution = current_solution

else
next solution = best_solution
end if
layer_sensitivity_update
end for




Pruning

* high sparsity — sparse matrix cudnn operations with conv layers
* in case of fully connected sparse matrix multiplication
* fully connected up to 80-90% sparsity

* Yolo v2 - set of constant bounding boxes (you only look once)
* Less the 1% in mAP on COCO and VOC Pascal with 8 bit precision

* about 25-30% of average sparsity, weighted close to 50%



Reinforcement learning for compression

* Q- learning

 Actor critic (policy gradient with Q learning)

 use for choosing layers for pruning, steps and other parameters
* choosing layers for compression

* combination - compression, pruning, quantization



GAN (Adversarial networks) for small object
detection

time: 123ms




