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• HPC Systems are a key instrument in multiple fields of 
science

• Exponential growth
of performance

• What is a HPC System?
• compute (cpu + memory)
• network
• storage
• software... etc.

• How is storage doing?
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Test system

• Infiniband 4x FDR (56Gb/s)
• Lustre FS as main storage:

• scratch: 5 PB @ 120 GB/s

• archive: 5 PB @ 60 GB/s

• No. of disks:

• scratch: 1600

• archive: 1080

• We do use NFS!
• $HOME dirs

• software
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Lustre filesystem

• Parallel distributed file system used in large-scale 

computing

• In contrast to a standard filesystem:
• components of the system communicate with each other 

using network

• multiple clients can share files and homogeneous space
• data access, file locks, permissions etc.

• data is stored on OSTs (actually disks)
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Lustre fs architecture

The key components of Lustre filesystem:

• Object Storage Servers (OSS)

• Object Storage Targets (OST)

• Metadata Servers (MDS)

• Metadata Targets (MDT)
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scratch

● 16 OSS

● 160 OST

● 2 MDS

● 1 MDT

archive

● 8 OSS

● 108 OST

● 2 MDS

● 1 MDT



Lustre fs architecture 7



Lustre installation

• Works mainly in kernel space

• Can be used in small and large-scale enterprise 

environments

• Available backend filesystems:

• ldiskfs
• based on ext4 filesystem

• ZFS
• additional recovery, compression, improved performance 

and security of stored data
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Lustre benefits

• Allows for significant increases in performance of 

read/write operations 
• reading from and writing to disks in parallel

• Security and high availability (HA)
• HA stack reduces risks origination from single point of failure

• storage consistency verification and security mechanisms 

• Simple and well-known user interface
• operations on files via standard Linux/Unix commands and 

functions supplied by implementing POSIX 
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Lustre file stripping

• Stripe count
• number of objects that make up a file hosted by Lustre

• Stripe size
• amount of sequential data that is written to an object before 

moving on to another object
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Lustre file stripping

• Parallel reading/writing across multiple OSTs

• Increase aggregate bandwidth linearly

• File size not limited to constraints of single OST
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HDF

HDF (HDF5): Hierarchical Data Format, set of libraries and tools

• Data stored in a hierarchical and structured way

• Groups and subgroups - container structures, 

correspond to directories

• Datasets - form of a multidimensional arrays with fixed 

dimensions of a homogenous type, correspond to files

• Metadata - attributes allowing to describe a group or a 

dataset
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HDF benefits

• Hierarchical data storage system
• data organization

• self descriptive data

• Implements functions for parallel access to data

• One big file instead of many small files
• heterogeneous data (+ metadata)

• great for Lustre!

• Portable software library
• high-level API with C, C++, Fortran 90, Java, Python (and 

many more) interfaces
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HDF access to data

• Parallel access with multiple approaches:
• all CPUs write to one file

• one node writes to one file; each node has its own file

• each CPU writes to one file

• Modes:
• Collective (additional optimization)

• Independent
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Test setup

• Goal: optimize data write from a job with multiple 

processes

• Gathered data from tests performed on archive space

• Environment:
• library: Parallel hdf5-1.8.12

• Data set size: 4394,53MB

• Stripe size: 1MB

• Process count: 1/24/48/96/192 (multiples of 24 cores/node)
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• Setup
• One output file for all CPUs
• Collective mode

• Goal: What amount of stripes works best?
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• Setup
• One output file for all CPUs

17

St
ri

p
e 

co
u

n
t

St
ri

p
e 

co
u

n
t

CPU count CPU count

Collective vs independent

collective independent



• Setup
• One file per node (24 CPUs)
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• Setup
• all CPUs write to one file

• one node writes to one file; each node has its own file

• each CPU writes to one file

• What strategy works best for studied use case?
(best settings for individual strategies)
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Conclusions

• It is possible to achieve significant performance 

improvements by optimizing access to storage

• File per cpu strategy/node/job provides biggest 

difference

• Many small files suggest collective, few larger ones 

independent

• Higher stripe count usually provides better 

performance, for jobs with many CPUs working with 

few files

• There is no “best approach” to implementing IO 

operations in HPC applications
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Thank you for attention! Questions?
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