
How to exploit parallelism of HPC
storage based on Lustre File System and

Hierarchical Data Format

A. Dorobisz, M. Pawlik, M. Czuchry, D. Kałafut, K. Noga

Presentation plan

• Introduction

• HPC Storage in practice
• Lustre case study

• HDF

• Test results

• Conclusions

2

• HPC Systems are a key instrument in multiple fields of
science

• Exponential growth
of performance

• What is a HPC System?
• compute (cpu + memory)
• network
• storage
• software... etc.

• How is storage doing?

Introduction 3

Test system

• Infiniband 4x FDR (56Gb/s)
• Lustre FS as main storage:

• scratch: 5 PB @ 120 GB/s

• archive: 5 PB @ 60 GB/s

• No. of disks:

• scratch: 1600

• archive: 1080

• We do use NFS!
• $HOME dirs

• software

4

Lustre filesystem

• Parallel distributed file system used in large-scale

computing

• In contrast to a standard filesystem:
• components of the system communicate with each other

using network

• multiple clients can share files and homogeneous space
• data access, file locks, permissions etc.

• data is stored on OSTs (actually disks)

5

Lustre fs architecture

The key components of Lustre filesystem:

• Object Storage Servers (OSS)

• Object Storage Targets (OST)

• Metadata Servers (MDS)

• Metadata Targets (MDT)

6

scratch

● 16 OSS

● 160 OST

● 2 MDS

● 1 MDT

archive

● 8 OSS

● 108 OST

● 2 MDS

● 1 MDT

Lustre fs architecture 7

Lustre installation

• Works mainly in kernel space

• Can be used in small and large-scale enterprise

environments

• Available backend filesystems:

• ldiskfs
• based on ext4 filesystem

• ZFS
• additional recovery, compression, improved performance

and security of stored data

8

Lustre benefits

• Allows for significant increases in performance of

read/write operations
• reading from and writing to disks in parallel

• Security and high availability (HA)
• HA stack reduces risks origination from single point of failure

• storage consistency verification and security mechanisms

• Simple and well-known user interface
• operations on files via standard Linux/Unix commands and

functions supplied by implementing POSIX

9

Lustre file stripping

• Stripe count
• number of objects that make up a file hosted by Lustre

• Stripe size
• amount of sequential data that is written to an object before

moving on to another object

10

Lustre file stripping

• Parallel reading/writing across multiple OSTs

• Increase aggregate bandwidth linearly

• File size not limited to constraints of single OST

11

File B

File A

Object

OST01 OST02 OST03

1

4

7

2

5

1

3

6

HDF

HDF (HDF5): Hierarchical Data Format, set of libraries and tools

• Data stored in a hierarchical and structured way

• Groups and subgroups - container structures,

correspond to directories

• Datasets - form of a multidimensional arrays with fixed

dimensions of a homogenous type, correspond to files

• Metadata - attributes allowing to describe a group or a

dataset

12

HDF5 File

Metadata

Metadata Metadata Metadata

Group2

Group1 SubGroup1

Dataset3 Dataset2

Dataset1

MetadataMetadataMetadata

HDF benefits

• Hierarchical data storage system
• data organization

• self descriptive data

• Implements functions for parallel access to data

• One big file instead of many small files
• heterogeneous data (+ metadata)

• great for Lustre!

• Portable software library
• high-level API with C, C++, Fortran 90, Java, Python (and

many more) interfaces

13

HDF access to data

• Parallel access with multiple approaches:
• all CPUs write to one file

• one node writes to one file; each node has its own file

• each CPU writes to one file

• Modes:
• Collective (additional optimization)

• Independent

14

Test setup

• Goal: optimize data write from a job with multiple

processes

• Gathered data from tests performed on archive space

• Environment:
• library: Parallel hdf5-1.8.12

• Data set size: 4394,53MB

• Stripe size: 1MB

• Process count: 1/24/48/96/192 (multiples of 24 cores/node)

15

• Setup
• One output file for all CPUs
• Collective mode

• Goal: What amount of stripes works best?

16

CPU count

St
ri

p
e

co
u

n
t

Stripe count

• Setup
• One output file for all CPUs

17

St
ri

p
e

co
u

n
t

St
ri

p
e

co
u

n
t

CPU count CPU count

Collective vs independent

collective independent

• Setup
• One file per node (24 CPUs)

18

CPU count CPU count

St
ri

p
e

co
u

n
t

Collective vs independent

• Setup
• all CPUs write to one file

• one node writes to one file; each node has its own file

• each CPU writes to one file

• What strategy works best for studied use case?
(best settings for individual strategies)

19

CPU count

p
er

f
(M

B
/s

)

Write strategy comparison

Conclusions

• It is possible to achieve significant performance

improvements by optimizing access to storage

• File per cpu strategy/node/job provides biggest

difference

• Many small files suggest collective, few larger ones

independent

• Higher stripe count usually provides better

performance, for jobs with many CPUs working with

few files

• There is no “best approach” to implementing IO

operations in HPC applications

20

References

References
1. Lockwood, G. K., Hazen, D., Koziol, Q., Canon, R. S., Antypas, K., Balewski, J., et al.,

“Storage 2020: A Vision for the Future of HPC Storage” (2017).
2. http://lustre.org (accessed January 2019).
3. https://www.hdfgroup.org/solutions/hdf5 (accessed January 2019).
4. Howison, M. “Tuning HDF5 for Lustre File Systems” (2010).
5. http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-

applications/optimizing-io-performance-for-lustre
6. http://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o

Thank you for attention! Questions?

21

http://lustre.org
https://www.hdfgroup.org/solutions/hdf5
http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/
http://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o

short url

goo.gl/gxBs1k

22

