

Particle-In-Cell Simulations of the Rippled Low Mach Number Shock in High Beta Cosmic Plasma

Oleh Kobzar

Department of Gamma-ray Astrophysics

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Collaborators:

Jacek Niemiec – Institute of Nuclear Physics, PAS, Kraków, Poland

Takanobu Amano – University of Tokyo, Japan

Masahiro Hoshino – University of Tokyo, Japan

Shuichi Matsukiyo – Kyushu University, Japan

Yosuke Matsumoto – Chiba University, Japan

Martin Pohl – University of Potsdam and DESY-Zeuthen, Germany

KU KDM'19, Zakopane, March 6 – 8, 2019

Astrophysical objects

Colisionless shocks in astrophisical objects on the various scales:

- Earth's bow shock.
- Solar wind termination shock.
- Supernova remnant (SNR) shocks.
- Active galactic nuclei (AGN) shocks.
- Large-scale structure formation shocks, mostly in the clusters of galaxies:
 - turbulence shocks,
 - infall shocks,
 - merger shocks.

In the latter case, low-Mach-number (M << 10) shocks are found to propagate in high-beta ($\beta > 1$) plasmas.

X-ray and radio emission show the electron acceleration to non-thermal energies.

White – optical (Hubble) Blue – X-ray (Chandra) Red – radio (VLA)

Shock forming and particles acceleration

Simple binary galaxy merger

Simple scheme of the DSA

Injection problem:

Particle should be pre-accelerated to be involved in the DSA process

2D-3V Particle-In-Cell simulation

2-component proton-electron plasma.

Shock is formed via interaction between reflected and incoming particles.

$$L_x = 65,000 \Delta \approx 433 \lambda_{si}$$
 $L_y = 4,800 \Delta \approx 32 \lambda_{si}$

Physical parameters:

- Reduced ion to electron mass ratio $m_i/m_e = 100$
- Upstream plasma velocity $v_0 = 0.1c$
- Electron/ion thermal velocity $v_{e/i \text{ th}} \approx 0.387 c / 0.0387 c$ (plasma temperature $k_B T \approx 40 \text{ keV}$)
- Sonic Mach number of the shock $M_s = 3$
- Alfven Mach number of the shock $M_A \approx 6$
- Plasma beta ($\beta = p_{\text{therm}} / p_{\text{mag}}$) $\beta = 5$
- Magnetic field orientation $\theta = 75^{\circ}$

Computations:

- on *PROMETHEUS* cluster
- up to 6240 CPU cores
- ~ 10 mln of CPU-hours
- ~ 60 TB of disk space used for data output

Global system evolution: *Plasma density*

Global system evolution: Magnetic field

Global system evolution: *Electric field*

Phase space evolution: Laminar shock

Phase space evolution: *After rippling appearance*

Phase space evolution: Rippling is well developed

Time evolution of the electron energy spectra

Electron undergoing the **single-cycle** (regular) **SDA** acceleration process at the shock front

Electron undergoing the **multi-cycle** (double) **SDA** acceleration process at the shock front

Extra-high energy electron undergoing the SSDA acceleration process at front of the rippled shock

Extra-high energy electron undergoing the pre-acceleration in the downstream region before SDA (or SSDA) process at the shock front

Electron acceleration: SDA

Electron acceleration: SSDA

Electron acceleration: Downstream pre-acceleration

Summary

- Performed simulation confirmed all previously described peculiarities of low-Mach-number shocks in high-beta plasma.
- Acceleration of electrons at laminar shock is found to be in good agreement with SDA theory prediction.
- Besides of firehose instability, reflected electrons are found to trigger also the bump-on-tail instability, that in turn results in generation of the electrostatic Langmuir waves.
- Rippling of the shock facilitates the electron acceleration to much higher energies relative to the regular SDA. We interpret this as a result of SSDA process, although rare multi-cycles of SDA are also possible.
- ✓ The population of the most energetic electrons with γ > 50 are found to be accelerated in the downstream region between two overshoots. We interpret this as a transient effect related with transformation of the shock structure.
- ✓ Downstream electron energy spectra demonstrate non-thermal power-law shape with slope p = -2.4, that is consistent with radio-observations.
- ✓ Further work assumes the series of simulations for higher values of plasma beta (β ≈ 20). It requires the usage of several times larger computational resources, up to few tens of thousand CPU-s.