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Astrophysical shocks
Shocks in many astrophysical 

environments

SNRs → non-relativistic shocks

Active Galactic 

Nuclei, Pulsars, 

Gamma Ray Burst, 

Blazars →  relativistic 

shocks



Astrophysical shocks: Blazars

AGN with relativistic jets 

seen approx head on

Dissipation →  Internal

Shock Model

We study the model for mildly relativistic  (γ∼2) regime 

- perpendicular magnetic field  

- total magnetization σ = 0.1

Sikora, 2013

Sikora, 2016



Particle-In-Cell Simulations

PIC simulations →  ab-initio method of  solving Vlasov equation:

1. Solving of Maxwell’s equations on a numerical grid 

2. Integration of rel. particle eq. of motion in self-consistent EM field



Simulation setup

Ions and electrons cold plasma 

mi/me = 50, σ = 0.1, λse =80, λsi = 566



Particle-In-Cell Simulations

Large-scale high-resolution PIC 

simulations must be performed at high-

performance supercomputing centers

Prometheus (Poland, Intel Xeon E5-

2680v3, 53,568-core, 2.4 Pflop/s)

Main simulations:

→ 2D  (2D3V)

→ ~ 74TB of storage

→ > 12 mil of walltime hours



The Synchrotron Maser Instability

A ring of particles gyrating in the shock transition zone breaks up in bunches of 

charge → they  radiate a coherent train of transverse EM waves of the X-mode in 

the upstream (precursor).
.

Incoming e- oscillates and their guiding-center 

velocity decreases →  ions keep going. 

Difference in bulk →  longitudinal E field 

(wakefield) → this field can boost e- toward 

the shock and accelerate them  



Large scale simulation: field movie
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Linear stage: tΩci=15.3

1. Shock at ~10.5 x/ λsi, average downstream density compression factor ~ 3

2. Precursor waves in Bz and Ey, velocity ~ c → X-mode EM waves

3. Wakefield in Ex, λEx ~ 3/ λsi (in accord with Hoshino 2008)
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Linear stage: tΩci=15.3 - phase space maps (px)

1. Sort of ring-like feature at the shock in ion phase space 

2. e- upstream phase space is modulated by Ex → precursor waves affect the plasma

3. Still no evidence of e- boosted towards the shock (i.e., in negative x-momentum) 



Linear stage: tΩci
-1=15.3 - Fourier spectra

λBz ~ 0.37 λsi (cfr. Theory: λBz,th ~ 0.37λsi)

More accurate 

estimate of 

wavelenghts: 

Very good 

agreement with 

theory!

λEx ~ 2.9λsi (cfr. Theory: λEx,th ~ 3.1λsi)

oblique component → first phases of 

the rippling



Late stage: tΩci=171.0

1. Shock at ~127 x/ λsi, downstream density compression factor ~ 3

2. Precursor waves in Bz and Ey, velocity ~ c → X-mode EM waves

3. Wakefield in Ex, λEx ~ 3/ λsi (again, in accord with Hoshino 2008)



Late stage: tΩci=171.0 - Rippling

➢ Proposed origin: ions gyrating at the shock → scales and directions are 

compatible!

➢ Also we see gyratin ions in ph.space



Late stage: tΩci=171.0 - Phase space maps (px)

1. Ring-like feature at the shock in ion phase space 

2. Faint downstream oscillations in e- phase space 

3. e- upstream phase space is modulated by Ex → precursor waves and wakef. affect the plasma

4. e- are  boosted towards the shock (i.e., in negative x-momentum) 



Late stage: tΩci=171.0 - Fourier spectra
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ES in nature, compatible 

with a oblique wakefield

BUNCHING: is it an 

interference 

phenomenon?



Late stage: tΩci=171.0 - Spectra

1. Ions are still isotropizing around their initial energy 

2. e- are heated in bulk, but show asymmetry 

3. Double maxwellian → population of heated electrons



Late stage: tΩci=171.0 - Spectra in time

Heating of e- progresses for a while, then gets lower

Quenching mechanism proposed by Sironi2011?  
efficient SMI: e- gets hotter

Cold e- at shock                                                                          hotter e- at shock quench efficiency of SMI 

colder e- at shock



1D Late stage: tΩci=171.0

1. Shock at ~127 x/ λsi 1.Ring-like feature at the shock in ion phase space 

2. Higher intensity of prec. and wakefield             2. e- upstream phase space is modulated by Ex

3. e- are  boosted towards the shock (negative px)



1D Late stage: tΩci=171.0 - Fourier spectra

Compatible with standard SMI 

precursor (+some noise)

Compatible with standard SMI 

wakefield



1D VERY Late stage: tΩci=330.0 - Spectra

1. Ions are still isotropizing around their 

initial energy 

2. e- double maxwellian → population 

of heated e-

3. Higher coupling! → correlated with 

higher efficiency of SMI

Again heating of e- progresses for a while, then gets lower. 

No higher heating but a sort of “up-and-down” behaviour

This seems to agree with quenching mechanism proposed by 

Sironi2011!



1D VERY late stage: tΩci=330.0 - Spectra in time

Again heating of e- progresses for a while, then gets lower. 

No higher heating but a sort of “up-and-down” behaviour

This seems to agree with quenching mechanism proposed by Sironi2011!



Summary

1.tWe presented preliminary results of PIC simulations of a poorly explored regime of 

mildly relativistic magnetized shocks in ion-e- plasma.

2. We show consistent evidence for Synchrotron Maser Instability(precursor waves, 

wakefields) 

3. Evidence of the rippling feature (new for PIC simulation)

3. Particle-wave interactions in the precursor → plasma thermalization and limited 

ion-to-e- energy transfer:  is it due to waves efficiency?

4. 1D simulation proves that!

5. Further study: the in-plane magnetic field setup (need of ~15 million CPU hours)



Thank you 

for your attention


