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Astrophysical shocks
Shocks in many astrophysical 
environments

SNRs → non-relativistic shocks

Active Galactic 
Nuclei, Pulsars, 
Gamma Ray Burst, 
Blazars →  relativistic 
shocks



Astrophysical shocks: Blazars

AGN with relativistic jets 
seen approx head on

Dissipation →  Internal
Shock Model

We study the model for mildly relativistic  (γ∼2) regime 
- perpendicular magnetic field  
- total magnetization σ = 0.1

Sikora, 2013
Sikora, 2016



Particle-In-Cell Simulations
PIC simulations →  ab-initio method of  solving Vlasov equation:

1. Solving of Maxwell’s equations on a numerical grid 
2. Integration of rel. particle eq. of motion in self-consistent EM field



Particle-In-Cell Simulations
Large-scale high-resolution PIC 
simulations must be performed at high-
performance supercomputing centers

Prometheus (Poland, Intel Xeon E5-
2680v3, 53,568-core, 2.4 Pflop/s)

Main simulations:
→ 1D-like, (1D3V)
→ 2D  (2D3V)



Simulation setup

Ions and electrons cold plasma 

mi/me = 50, σ = 0.1, λse =80, λsi = 566



The Synchrotron Maser Instability
A ring of particles gyrating in the shock transition zone breaks up in bunches of 
charge → they  radiate a coherent train of transverse EM waves of the X-mode in 
the upstream (precursor).

.
Incoming e- oscillates and their guiding-center 
velocity decreases →  ions keep going. 

Difference in bulk →  longitudinal E field 
(wakefield) → this field can boost e- toward 
the shock and accelerate them  



Some test: choosing fiducial parameter

(a~ ωpe/ω δB/B0)

1D simulations, measure of the amplitude of EM waves in the shock precursor

Saturation at λse =80



Fiducial simulation: shock structure

1. Shock at ~87 x/ λsi, density compression factor ~3

2. Precursor waves in Bz and Ey, velocity ~ c → X-mode EM waves

3. Wakefield in Ex, λEx ~ 3/ λsi (in accord with Hoshino 2008)

dens

Ex-E0x
B0*c

Ey-E0y
B0*c

Bz-B0z
B0



Fields movie
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Phase space movies
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Phase space maps

1.tRing-like feature at the shock in ion phase space 
2.tFaint downstream oscillations in e- phase space 
3.te- upstream phase space is modulated by Ex → precursor waves affect the 
plasma
4. e- are  boosted towards the shock (i.e., in negative x-momentum) 

pxe/me

pye/me



Particle distribution spectra

1.Downstream ions are isotropized around their initial energy 
2. e- also thermalized close to their initial energy and are only slightly heated in bulk 
(double maxwellian fit).
3. Asymmetry in high energies  e- may depend on upstream acceleration by 
wakefield.



Summary
1.tWe presented preliminary results of PIC simulations of a poorly explored regime of 
mildly relativistic magnetized shocks in ion-e- plasma.

2. We show consistent evidence for Synchrotron Maser Instability(precursor waves, 
wakefields) 

3. Particle-wave interactions in the precursor → plasma thermalization and limited 
ion-to-e- energy transfer

4. More analysis will be performed in the near future: 
(a) larger box to investigate features in the ion scale
(b) higher value for the mass ratio (closer to the real one) 
(c) introduction of a positron component

5. A far greater amount of computation time will be necessary (up to 20 million CPU 
hours)



Thank you 
for your attention
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