Polarizable molecular dynamics simulations of ionic liquid based electrolytes for Na-ion batteries

Andrzej Eilmes, Piotr Kubisiak

Jagiellonian University, Faculty of Chemistry

KUKDM 18, Zakopane, 08.03.2018

Motivation

 Although rechargeable lithium-ion batteries have become very successful devices, prospect of growing demand and concerns about possible shortages in supply of lithium salts stimulate interest in alternative chemistries

- Significant effort is invested in research on sodium-ion batteries
- Experimental studies are supported by computational modeling

Motivation

- An important part of an ion battery is the electrolyte
- Several types of electrolytes for Na-ion devices have been proposed, based on molecular solvents, ionic liquids or polymers
- In this work we performed molecular dynamics simulations in order to check the performance of available force fields in reproduction of experimentally measured properties of ionic liquid based electrolyte
- Different parameterizations tested

Experimental data: D. Monti, E. Jónsson, M.R. Palacin, P. Johansson: "Ionic Liquid Based Electrolytes for Sodium-Ion Batteries: Na⁺ Solvation and Ionic Conductivity", J. Power Sources 2014, 245, 630–636

MD simulations

- simulation boxes of NaTFSI salt dissolved in EMIM-TFSI ionic liquid
- increasing content x of Na salt in Na_xEMIM_(1-x)TFSI electrolytes

 several studies show the importance of polarization effects – but accounting for polarization is expensive

- three variants tested:
 - no polarizability NP1
 - Drude polarizability (charge-on-a-spring) Dr-P1
 - charge rescaling x0.7 approach sc-P1

MD simulations

- NAMD v. 2.12 MD software
- NpT simulations with Nose-Hoover thermostat (T=298 or 333 K) for 140-170 ion pairs

 \bullet about 1.1 μs of the MD trajectory collected

- \cdot two Prometheus nodes (2x24 CPU cores) were used for each simulation
- each run produced approx. 48 ns (NP1, sc-P1) or
 27 ns (Dr-P1) trajectory per day
- about 100k or 180k walltime hours were spent per simulation

Structures of electrolytes

x = 0.1

x = 0.3

Although at short times there are differences in spatial distribution of Na⁺ ions, electrolytes are homogenous at long timescales

Structures of electrolytes

In polarizable force field (Dr-P1) maxima in distributions of Na-O and Na-Na distances move to smaller distances

Effect of charge rescaling is the opposite

Densities of electrolytes

The best agreement with experiment is obtained in non-polarizable simulations

Charge rescaling yields seriously underestimated values

Transport properties

- Transport properties estimated from recorded MD trajectories
- viscosity: integral over time of pressure autocorrelation tensor

$$\eta = \frac{V}{kT} \int_{0}^{\infty} \left\langle P_{\alpha\beta}(t) P_{\alpha\beta}(0) \right\rangle dt$$

• diffusion coefficients: from mean square displacements of ions

$$D_{i} = \lim_{t \to \infty} \frac{1}{6t} \left\langle \left| \mathbf{R}_{i}(t) - \mathbf{R}_{i}(0) \right|^{2} \right\rangle$$

• conductivity: related to the collective ion diffusion coefficient

$$D_{coll} = \lim_{t \to \infty} \frac{1}{6tN} \sum_{i,j} z_i z_j \left\langle [\mathbf{R}_i(t) - \mathbf{R}_i(0)] [\mathbf{R}_j(t) - \mathbf{R}_j(0)] \right\rangle$$

Why do we need computational power?

• viscosity:

$$\eta = \frac{V}{kT} \int_{0}^{\infty} \left\langle P_{\alpha\beta}(t) P_{\alpha\beta}(0) \right\rangle dt$$

- time long enough is needed to get the integral constant
- but there is inevitable noise
- data averaged over 1000 ns to get reasonable accuracy for 10 ns

Why do we need computational power?

diffusion and conductivity:

$$D_{i} = \lim_{t \to \infty} \frac{1}{6t} \left\langle \left| \mathbf{R}_{i}(t) - \mathbf{R}_{i}(0) \right|^{2} \right\rangle$$

$$D_{coll} = \lim_{t \to \infty} \frac{1}{6tN} \times \sum_{i,j} z_i z_j \langle [\mathbf{R}_i(t) - \mathbf{R}_i(0)] [\mathbf{R}_j(t) - \mathbf{R}_j(0)] \rangle$$

- we have to achieve timescale beyond subdiffusive regime (> 10 ns)
- to get reasonable data for 100 ns we average over whole 1000 ns

Viscosity

The best agreement with experiment again is obtained in nonpolarizable simulations

Polarizable FF yields seriously underestimated values and no dependence on x and charge rescaling gives wrong order of magnitude

Conductivity

Values increase in polarizable Dr-P1 field and are closer to experiment Charge rescaling wrong again (too large values)

Conductivity

Collective diffusion may be decomposed into different components

 Unlike molecular liquids, in ionic liquids anion-cation motions are anticorrelated and contribute positively to conductivity

• In nonpolarizable FFs, conductivity decreases with x, because all terms, including diagonal decrease

• In polarizable FFs, diagonal terms decrease slowly, and the reduction of conductivity is due to anion-anion and cation-cation anticorrelations

Summary

- Some properties (density, viscosity) of $Na_x EMIM_{(1-x)}TFSI$ electrolytes are better described by non-polarizable parameterization
- Polarizable FF gives better values of conductivity and IL diffusion coefficients
- Cheap method of charge rescaling fails completely, yielding too low densities, and accordingly too low viscosities and to high conductivities
- Details of some processes (contributions to conductivity) depend on the polarizable vs. nonpolarizable parameterization – need for further studies

P. Kubisiak, A. Eilmes: "Molecular Dynamics Simulations of Ionic Liquid Based Electrolytes for Na-Ion Batteries: Effects of Force Field", J. Phys. Chem. B 2017, 121, 9957-9968.

Ackowledgments

Co-worker:

Dr Piotr Kubisiak

The work was supported by NCN grant no. UMO-2016/21/B/ST4/02110

PL-Grid infrastructure (Prometheus) was used in calculations

