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1. INTRODUCTION




1. INTRODUCTION

1.1 Research subject

Today talk is about energy transmission by overhead power lines.
Everybody needs this energy. Are there any obstacles in energy transmission?
troubles - limited level of energy supply
reality - ageing (40 years) infrastructure
- only two allowed transmission safety thresholds:
summer (high temperature) and winter (ice)
change proposed - System of Dynamic Power Flow Control
Transmission using innovative on-line (SDZP)
measurements and analysis
effect - estimated gain
SDZP < 15%
graphene 100% + 200%

consortium - Universities 5, Polish Academy of Sciences,
Companies 2, Network operators 3 (TAURON, PSG, PSE)

sponsorship - Ecologic Concepts Generator (GEKON)

our task - Measurements aided numerical analysis of large 3D

displacements of extensible cables in overhead power
transmission lines searched are solutions:
reliable, precise, fast
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1.2 Main objectives of the research program

SDZP project

— Provide ways and tools for the optimal dynamic management of safe
overhead power transmission

Our research

— Using innovative on-line measurements develop reliable and efficient tools
of 3D on-line analysis of conductors behaviour in overhead power
transmission lines.

— Examine various mechanical models, their mathematical formulations
(strong, weak, hybrid mixed), and discrete solution methods (FEM, MFDM,
PBA) in order to find the best solution approach.



1.3 Categories of engineering tasks involved

l. Evaluation of the actual, and the maximum current
safety of overhead power transmission lines based on
technical data, and all on-line measurements

1. Prediction of overhead power transmission lines
behaviour based on technical data and weather forecast
(6-72 h only) while on-line data are not available

1. Verification of weather forecast data against measured
on-line data, and evaluation of prediction quality of
overhead power transmission lines behaviour



Cable deflection model

_-nSulator
....

" measuring
device

q, |
o AT
e g pole
K

insulator

measuring device

pole
(
X, ¢ K

9



2.7 Boundary value problem type A - strong formulation
Find displacement components (in total Lagrangian description):

wy (X, 1), ua (X, 1), us(X, 1), X €0, L]. L =L(5.t)
( D%uy, / i
Pz F;, = p; linear momentum
F, = AES EE?T (01; + -u.;) constitutive relation
) £ = \/(1 +uy )2 + (ug)2 + (uz)2 —1 strain definition
F+ K*(u—u) =0 (elastic supports) b.c. for X =0, L
+initial conditions

i=1,2,3
L — unloaded cable length r=X +uy(X)
F; — axial force components deflection curve -y : y = us(X)
K*® — elastic support stif fness matrizc z = uz(X)

1 — unloaded support position



2.8 Boundary value problem type A - weak formulation
u e H0, L]

L L
/ pfu-'&+/ -F dX — / v - devLZUEKU(uk—uk)—O
0 0

k=1
Yo € HA[0, L]

Newton-Raphson linearization for static case «"t1) = u(") + 4
!/L() dF /L dp
v
0 du o Ou

L L 2
+/ v - F dX—/ v-p dX—I—Zv}:KS)(uk—*&;G):[]
0 v k=1

Vv € H}[0, L]



2.9  Exact analytical 3D solution — verification of
numerical model

P = (): p2 = U = const. pP3 = const, Hl([]) — H_?‘([]) — H%([]) =0

Po
ot _ X +2D
szp—zo_ (\/CQJF(}?UXJFDP—\/(”JFD}) ot = paX
Po 2AEpo
ug = 2 (\/C? + (poX + D)2 —\/C2? + D? ) P T8 X
Pa ZflE Po

o 2 2
Do = \/.p?_ + p3. C & D are constants that may be found from two boundary

conditions ul = C, \/u} + ug L) = d.




2.10 Large deflections of inextensible catenary curve
MATHEMATICAL MODEL

differential equation:

[

2 | 2
o4 J _ v‘ 1+ (’f—”) in (0,L)

- dx
with kinematic boundary conditions

y(0) = Hy, y(L) = H;,

analytical solution

y = acosh (I — C) + D, z € [0, L]
1
conditions for the Newton — Raphson procedure

{ y(0) — Hy = 0 ALg — AL(T,)

y(L)— H. =0 where 1 + aT.
AL(T) — Lg(l +aT)=10 > o
*) v t AL(T:) =a lsinh ((_—) — sinh ((_ L)]

(I (L




3. Experimental measurements involved
Routine test
surveying measurements of selected cables deflections
use: theoretical model calibration and validation

On-line
Measuring Location Measured quantity
device
Register Selected conductors Current intensity I
close to towers Conductor temperature T
Conductor inclination Y
and rotation ® angles
Base stations Selected towers close to Meteorological data (temp.,

register wind, ...

Meteorological Nodes of network used for Meteo data as for base station
station collection meteo data, and more, no information about

recalculated to arbitrary conductors as above (I, T, v, ®)
chosen point



3. Experimental measurements involved - continued

Use of on-line measured data

Metrological data
(temperature, wind, ...) = power line structure loading

conductor inclination = (1) comparison of measured
and rotation angles vy, o and calculated results
(i) hybrid theoretical —
experimental approach



4. MODELS CALIBRATION AND VALIDATION

4.1 Formulation

Calibration
Evaluation of the model free parameter
(here initial cable tension N, or initial cable length L)
based on surveyors measurements of cable deflection

Solution approach

()  Minimization of averaged L, norm of difference between measured cable
deflections XiE : yF , ZiE and those calculated upon theoretical model,
number of measured points of cable

min |
Uy (Lo ) (L ). s (L)
= 8 0 00 (0 06 ) ) -2

m i
1=12,....,m -number of measured points of cable

(i) Theoretical and experimental cable SAG equality

Validation
Verification of the model quality is done when using in a similar way as above a
new set of measured cable deflections
We use the same formula for | as before but this time values Uu;,Uu,,U,
are considered as known from the already calibrated theoretical model.
Then we may directly determine | value characterizing model quality



4.2 Results of cable deflections measurements

TAURON POWER TRANSMISSION LINE IN GLIWICE

CALIBRATION DATA (17.03)
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4.3 Results of calibration and validation in Gliwice power line

INITIAL LENGTH vs SAGE
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690.5 690.6 690.7 690.8 690.9 691 691.1 691.2 691.3
total =690.8111 L, (m]
os INITIAL LENGTH vs ERROR
=3
ALL MEASUREMENTS DATA 5
ARE USED AT ONCE 5
o
0.2 : : : . : : :
690.5 690.6 690.7 690.8 690.9 691 691.1 691.2 691.3
L, [m]
VALIDATION for CALIBRATION DATA (17.03.2016) VALIDATION for VALIDATION DATA (04.04.2016)
og L? norm = 0.27737, max norm = 0.75348 Dﬁ L2 norm = 0.29958, max norm = 0.73736
2t O  measured displacements ™ 2 - €  measured displacements ™
0 calkulated displacements m 1-] 0 cakulated displacements &
4l =] 4 Oig
I g O g
oy : e 1] °F : D:
| 1 [ - | 1
e ® g ! o ger 8 ! 8y
_- 1 1 — 1 1
= 10 ; 1 8 1 = ok 5 ° I g I
1 1 I 1
12} 8 g : : 12} 8 : :
w0 % L % v T
I -1 1 | 1 I |
16t I SB I | 16 ¢ I 39 8 I I-
1 1 1 1 1 1
L8 . L . 1 . L 1 18 [ - . 1 . 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700



4.3 Results of calibration and validation in Gliwice — cont.

INITIAL LENGTH vs SAGE

found length =165.7934 239.6803 285.6929,
total =691.1667 =
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Ly [m]
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4.3 Results of calibration and validation
— cont.

found length = 165.6231

239.51

total = 690.6556

285.5226,

ONLY MIDDLE SPAN MEASUREMENTS

ARE USED

VALIDATION for CALIBRATION DATA (17.03.2016)
L? norm = 0.15981, max norm = 0.42256
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4.3 Results of calibration and validation in Gliwice power line

— cont.

found length = 165.6231 239.51  285.5226,
total = 690.6556

ONLY RIGHT SPAN MEASUREMENTS
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4.4 Comparison of errors of calibrated extensible and inextensible
cable models
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Figure 12: The measured data (red squares) and cable deformations computed by
extensible (pink curve) as well as inextensible (blue curve) models after calibra-

tion
. Gliwice, Poland, { 0LV Czestochowa, Poland, 220kV
span [/ location
span length cable catenary span length cahle calenary
_ mean norm 0.057m 0.0464m no data no data
leit:zpan max norm Lt am (,194m 0151m Sl lilow no data no data
middle MEean norm i, 145m 0.148m 0.241m 0.316m
v,
span maxnorm | oo™ [T0593m | 0.59m AL 0.826m | 1.005m
right ML Norm 0.142m (.138m . 0.357m 0.361m
o 4. = 5
ioai | memmenm | i o T Dl9Gm 489.56m 1.202m | 1.057m

Table 1: Morms of errors alter calibration
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VALIDATION DATA FOR: Czestochowa-PSE, 21.05.2016
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MEAN ERROR [m]

MEAN ERROR [m]

CABLE CALIBRATION, span #2
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DANE DO WALIDACJ! DLA: Czestochowa-PSE, 21.05.2016
dla KABLA: LOIJl =497.6667m, e_ =0.17502m,e _ =0.61533m
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4.5 Comparison of calibrated catenary and extensible
cable deflections (Gliwice power line)

SaYgatonary = 17-45M Air temperature

80°C
Sag e = 17.36m

Solution difference norms:
mean norm = 10cm, max. norm = 24cm
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5. HYBRID THEORETICAL — EXPERIMENTAL ANALYSIS OF
OVERHEAD POWER TRANSMISSION LINES

Constrained nonlinear optimization problem

5.1 Types of on-line measured data, and ways of their use

data types
= weather conditions, electric current induced data = conductors loadings

= angles of conductor inclination and rotation

chosen ways of use of measured angles
= comparison of measured and calculated data itself

= cable deflections analysis including measured data

- Approach I: including angle measurements into common simultaneous hybrid
theoretical-experimental-numerical solution approach

- Approach II: use of measured cable inclination and rotation angles to
appropriate modification of initial data and solution of cable deflections
b.v.problem mentioned above



5.2 Measurement of cable inclination angles by EC Systems

I




Cable inclination measurement

AY




Cable rotation measurement




On-line measured angles

A

SN T (AxAY, A7)
Ay measurement
' ' device
cable |

' X

4 _ AX R

I B measured
e T y -inclination angle
gy = ZAy -
J(Aax) +(A2)

@ -rotation angle



5.3 Hybrid solution approach | using the physically based approximation (PBA) for
simultaneous analysis of theory and all experimental data

General formulation

find the stationary point of the functional

pu,A)=A¢" (u)+(1-A)¢"(u)  Ae[0]]

satisfying equality A(u)=b
and inequality constraints | B(u) <e

where ¢T and ¢E are dimensionless theoretical and experimental parts of the functional.

Formulation for conductors displacements U ( X )

Theoretical part - only variational form available

L L 2
5¢T :%{IVE FdX _Iv.p dX +ZVI ,KS)(uk _Gk)} C — parameter for
0 0 k

dimensionless variational form

Experimental part — for measured inclination 7~ and rotation »*
angles as well as displacements

2 2 E11\2
e 1ty —tgy | |90 —t9e, L (PP
¢ J+2K kzi‘{ e, i e, +,—Z‘ € ’

J

‘Pj _PJEH2 :(Xj _XJE)2 +(y,— _ij)2 +(Wj _WjE)z




Two steps solution procedure

(i) solve
Sp=216¢p" +(1-1)dp" =0 | —> u(X, 1)
(i) find A__ for u(X,4) , 4¢€[0 1]
satisfying inequality constraints
local error
gy E 10 E P —PE|
9y, —197, <1 . 9w, —19o, <1 Mgl’ i=12,..J, k=12,..K
e7k ewk er
global error
\/cDE<£, m>1m~2=5
m
where I I Ay
thiT__ tgydX =— ~
\/ \/(Ax)z +(Az)2
9o, :X_[tga)dx = ~h(Ax, Ay, A7)

may be expressed in terms of unknown u quantities

e ,e ,e admissible measurement tolerances
Tk Wy j




5.4 Accounting for measurement data - approach ||

1 .
Whenever Wb — 3/ w(T®,L,q,p)dX| > e,
NN

[T?ﬁ.@,ﬁ 7 — 7= [T.L@.;}}

[ 2
J(Z):ﬂ'u / LL-?(Z)CIX—@EA] ‘I'ﬁT(T—TE)Z
A

o, T — appropriate weights
J(Z) =minJ(Z) subject to Z,— Z;| < e,

u = u(fﬁ q.p)

Other measured quantities, like angle + or wind ¢ may be also

considered in J(Z).



5.5

[m]~

Approach comparisons

TEST DATA#2 (EP) — Approach |

Influence of measurement data (MFDM)

21 nodes, computational time, 1: 1s, 2: 1s, 3: 18s measurement:

measurement: X=247m, y =-10°+2°

x=13m, y =—10° £ 2° /

optimal solution
(theory +
measurements)

theoretical solution
(no measurements)

experimental solution
(no theory)

300

1: 8.674m (\=1)
2: 8.2744m (\=1e-06)
3: 8.5656m (1=0.99937)

150



TEST DATA#2 (EP)—Approach | against Approach Il

Influence of measurement data (MFDM — approach I, FEM — approach II)
21 nodes, computational time, 1: 1s, 2: 18s, 3: 1s

measurement
x=0m,y=-10°+2°

> -4 . .
[m] | (a Orggcr:?]alll szlijtl_ogcm) theoretical solution
PP g (no measurements)
i optimal solution
(approach )
-

300

S 1: 8.674m (A\=1) 55
' 2: 8.6462m (1\=0.99975) -
4:8.8075m (A=1)

150

100



6. PILOT FIELD ANALYSIS FOR CHOSEN SECTION OF
TAURON POWER TRANSMISSION LINE IN GLIWICE

6.1 Gliwice layout

10

1] 9



Gliwice layout — cont.

6.1




6.1  Gliwice layout — cont.
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6.2

"10 o 8

Analysis of 3-span section from Tauron power line —
MFDM solution approach — no initial length change
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[ 2% 5¢-01,-8¢-02,-3e-03) SCHEMATICAL 3D VIEW:
i pure theoretical
I § RS optimal — no initial length change

2328 (\=1)
2951m (\=1)
i
1)
1)
-, " 800
N _— 600
1:9.3003m (A=}~ 400
~_|2:9:2698m ()= X




6.2

Analysis of 3-span section from Tauron power line —
FEM solution approach — no initial length change

2030 FEM, n=61, Umax=0.71932m, Wmax=9.152m, Vmax=1.5425m

1: (-5e-01,-8e-02,-3e-03)
2: (-5e-01,-Be-02,-3e-03)

1:
2:

(-2e-01,-1-02,1e-02)
(-2e-01,-1-02,1e-02)

1:
2:

(2e-02,-6e-03 -7e-03)
(2€-02,-6e-03,-7e-03)

~

1:
2:

(-7e-01,-26-03,16-03)
(-7e-01,-2e-03,1e-03)

——1:3D: FEM, n=61, cpu=2s
—e—2:3D: FEM, n=61, cpu=39s

SCHEMATICAL 3D VIEW:
pure theoretical
optimal — no initial length change

1:5.2016m (A=1)
2: 5.2041m (1\=0.99999)

1: 7.5827m (A=1)
2: 7.5797m (1=0.99999)

1: 9.9
2 9.0834m ()=0:99999)

A=1)

z 200
-3 0

400

800
600



6.3 Hybrid theoretical-experimental analysis of
exemplary case from Tauron power line in Gliwice after
model calibration

DOKLADNOSC POMIARU KATOW: 1 st.

2:30: FEM, n=91, Umax=2.2798m, Wmax=16.3757m, Vmax=0m

0s |1 (09+00,0e+00,0e+00) 1: (-5e-01,-1e+01,0e+00) 1: (-1e+00,-2e+00,0e+00) 1: (-2+00 -4e+00,0e+00)
2: (0e+00,0e+00,0e+00) 2: (-56-01,-1e+01,0e+00) 2: (-1e+00,-2e+00,0e+00) 2: (-26+00,-4e+00,0e+00) 1:3D: FEM, n=91, cpu=2s
- - . . 1 1

——2: 3D: FEM, n=91, cpu=49s

2 -
S11 czujnik  teor. optym.
-4 rb6:  -9.5000 -8.5093 -9.1574
rb5: 1.6000 -0.2990 1.2304
6 - rb4.: -0.2000 -4.7830 -1.1994
rb3: 11.6000 9.8221 10.9791
8- rb2: -8.7000 -11.0790 -8.7132
> rbl: 8.4500 8.0327 8.2569
-10 -
12
14 - S10

1: 12.9585m (\=1)
2: 13.0491m (1=0.99992)

1: 14.3762m (\=1)
18! { J l , { 2: 14.393m (\=0.99992)

0 100 200 300 400 500 600 700 linia Gliwice

1:16.5557m (A=1) 04.04.2016
2: 16.3757m (1=0.99992) godz. 13:21




6.3 Hybrid theoretical-experimental analysis of
exemplary case from Tauron power line in Gliwice after
model calibration - RB4 data removed

23D FEM, n=91, Umax=2 2798m Wmax=16.528m, Ymax=0m DOKtADNOS’C’ POMIARU KATOW: 1 St‘
1: (0e+00,0e+00,0e+00)] [1: (-5e-01,-1e+01,0e+00) 1: (-1e+00,-26+00,0e+00) 1: (-26+00,-48+00,0e+00) RB4 DATA REMOVED
0% |2: (0+00.0e+00.0e+00)| [2: (-56-01-1e+01.0e+00) 2: (-1e+00,-2+00,0e+00) i |2: (-2e+00,-4+00,0e+00) 1: 3D: FEM, n=91, cpu=2s
—e—2: 3D: FEM, n=91, cpu=49s
2]
S11 czujnik  teor. optym.
4 - rb6: -9.5000 -8.5093 -8.8848
rb5: 1.6000 -0.2990 0.6160
6 rb4: 0 0 0
rb3: 11.6000 9.8221 10.4301
8- rb2: -8.7000 -11.0790 -9.1174
> rbl: 8.4500 8.0327 8.1577
-10 -
121~
4k S10

1: 12.9585m (A=1)
-162: 13.0016m (1=0.99998)

1: 14.3762m (A=1)
.18 L J l , 2: 14.3933m (1=0.99998)

0 100 200 300 400 500 600 700 linia Gliwice

1: 16.5557m (A\=1) 04.04.2016
2: 16.526m (1=0.99998) godz. 13:21




/. ON RELIABILITY AND PRECISION OF NUMERICAL SOLUTION
AND MEASURED DATA INVOLVED

« Variety of models developed and applied as well as tests made
« Various sensitivity tests
Comparison and checking results obtained from various models

— 3 models 1D, 2D, 3D (inextensible and extensible)

— 3 mathematical formulations
« 1 strong (non-linear PDE)

« 2 weak (variational principle)
— global
— hybrid mixed global-local (MLPG-5)

— 2 discretization methods
- FEM
« MFDM (Meshless Finite Difference Method)

— various approximation orders (1-6)

— 3 methods of non-linear analysis
(simple iterations, Newton-Raphson, relaxation)

— 3 independent computer codes (2 own + 1 commercial)
— a-posteriori error analysis
— large variety of numerical tests



8. FINAL REMARKS
8.1 Brief summary

Developed and tested were reliable mechanical and mathematical models as well as
relevant case study computer codes providing very fast and precise 3D analysis of
large cable displacements, as well as up to 3 spans sections of overhead power
transmission lines.

Due to real engineering problem considered special attention was paid to reliability of
the results obtained. Therefore, several independent approaches were investigated.

For these approaches examined and compared were
=precision of results obtained (a-posteriori error analysis ?), their
=convergence, and convergence rate
=stability
=efficiency (computational time)

Occasional surveying measurements of conductors displacements were used for
theoretical model calibration and validation

Results of innovative on-line measurements (weather data and cable inclination
and rotation angles) were incorporated into analysis of large displacements of cables.
Two different original solution approaches are proposed.



For prevailing self-weight loading both the inextensible (catenary curve)
and extensible cable models provide results close enough to measured
displacement data as the in-situ validation tests have shown. Otherwise,
however, the second, higher quality model should be used

The original elements of this research include:
= innovative problem formulation
= exact analytical 3D solution of cable b.v. problem
= first MFDM application to overhead power lines

= comparison of various (also hybrid) solution approaches

The solution approach developed here is carried out for the benefit
of real engineering problem of dynamic management of overhead
power lines.

The existing policy of dichotomous summer and winter safety
thresholds, limiting power transmission may be now replaced by
dynamic management based on innovative on-line measurements,
and analysis provided by our research reported here. Such policy
would allow for more efficient use of existing overhead power
transmission lines.



8.2 Future investigations

In the next step of this research development all tools worked out here
should be practically implemented in TAURON, PSE and PGE
power lines and intensively tested as to verify their true
engineering value. Indications regarding needed directions of the

further research may be also gained in this way.
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2. OVERHEAD ELECTRIC POWER TRANSMISSION LINES-
THEORETICAL 3D MODELING AND NUMERICAL ANALYSIS

2.1 Solution approach strategy

Special care about:

e assumptions made for modeling cables behaviour in a way possibly close
to real conductors condition

* high reliability of results obtained due to
— use of several different solution approaches
— solution stability
— comparison of our results with other sources of information
— a-posteriori error analysis

« solution efficiency
(low computational time, and high solution convergence rate)



2.2 On reliability of results obtained

Comparison and checking results obtained from various models
— 3 models 1D, 2D, 3D (inextensible and extensible)

— 3 mathematical formulations
« 1 strong (non-linear PDE)

« 2 weak (variational principle)
— global
— hybrid mixed global-local (MLPG-5)

— 2 discretization methods
- FEM
« MFDM (Meshless Finite Difference Method)

— various approximation orders (1-6)

— 3 methods of non-linear analysis
(simple iterations, Newton-Raphson, relaxation)

— 3independent computer codes (2 own + 1 commercial)
— a-posteriori error analysis
— large variety of numerical tests



2.3 References _ _
Y. Huang and W. Lan. Static analysis of cable structure. Applied Mathematics

and Mechanics, 27:1425-1430, 2006.

J. Orkisz. Finite difference method (Part IIl). Handbook of computational solid
mechanics. Springer-Verlag, 1998.

W. Karmowski and J. Orkisz. A physically based method of enhancement of
experimental data - concepts, formulation and application to identification of
residual stresses. Proc IUTAM symp on inverse problems in eng mech,
Tokyo, 1:61-70, 1993.

Huu-Tai Thai and Seung-Eock Kim. Nonlinear static and dynamic analysis of
cable structures. Finite Elements in Analysis and Design, 47(3):237 — 246,
2011.

W. Cecot, S. Milewski, J. Orkisz, Measurement aided computation of
extensible cable deflections, Proceedings of the 21st International
Conference on Computer Methods in Mechanics, pp.215-216.

W. Cecot, S. Milewski, J. Orkisz, Determination of overhead power line
cables configuration by the FEM and meshless FDM, submitted to
International Journal of Computational Methods

J. Orkisz, S. Milewski, W. Cecot, Innovative on-line measurements aided
analysis of power lines conductors configuration, XIV Konferencja Naukowo-
Techniczna: Techniki Komputerowe w Inzynierii, TKI 2016, Teresin 2016.



KUKDM - Zakopane

2016

Theoretical approach
concepts — models-
software numerical analysis

Hybrid theoret. - exp. approach .

formulation

2017

Experimental measurements use
— routine in situ

- on-line

Models calibration and validation

Hybrid approach analysis —
experimental data handing

— simulations

- hybrid analysis' of true power
line



2.4 Development of theoretical models - basic assumptions

Structures
— overhead transmission line supports (towers)

towers
= small elastic displacements, and strains
= types:
straight line support
angle support

— chain of insulators
= rigid body
= large displacements

— conductors
= next slide

— line section
= up to 1-3 spans — 2-4 towers
Methods
— analytical and
— numerical: FEM, meshless FDM, various formulations



Basic assumptions for modeling overhead power line cables

FEATURE

displacements

space

flexural stiffness
extensibility stiffness

cable length
strains

cable cross-section

Initial cable tension
loading

elastic supporting
structures with
suspension insulators

CATENARY CURVE

large

2D

none EJ=0

none EA=00
constant for constant
temperature L=1L,
e =0

constant A=A,

No> 0
self-weight

yes

EXTENSIBLE
CABLE
large
3D
none EJ=0

O0<EA<
variable L =L,

small €>0

variable A=A,

No> O

arbitrary distributed
and concentrated
yes

DIFFER
ENCES

no

yes
no

yes

yes

yes

yes

no
yes

no



Cable deflection model

_-nSulator
....

" measuring
device

q, |
o AT
e g pole
K

insulator

measuring device

pole
(
X, ¢ K

9



2.5 Sources of data used for analysis

Technical data for: conductors, supporting towers, insulators
Energoprojekt Krakow (design office)

Towers stiffness (calculated)
Warsaw University of Technology

Wind loading
Cracow University of Technology, A.Flaga approach

Conductors temperature
— EC Systems firm — (measured on-line)
— power lines operators (Tauron, PGE, PSE) (measured on-line current
and temperature data)

— Warsaw University, Interdisciplinary Centre for Mathematical and
Computational Modeling, (air temperature weather forecast on-line)

— AGH University of Science and Technology (temperature calculated
upon above on-line measured data)

Conductor deflections
Surveying Office (routine measurements)



2.7 Boundary value problem type A - strong formulation
Find displacement components (in total Lagrangian description):

wy (X, 1), ua (X, 1), us(X, 1), X €0, L]. L =L(5.t)
( D%uy, / i
Pz F;, = p; linear momentum
F, = AES EE?T (01; + -u.;) constitutive relation
) £ = \/(1 +uy )2 + (ug)2 + (uz)2 —1 strain definition
F+ K*(u—u) =0 (elastic supports) b.c. for X =0, L
+initial conditions

i=1,2,3
L — unloaded cable length r=X +uy(X)
F; — axial force components deflection curve -y : y = us(X)
K*® — elastic support stif fness matrizc z = uz(X)

1 — unloaded support position



2.8 Boundary value problem type A - weak formulation
u e H0, L]

L L
/ pfu-'&+/ -F dX — / v - devLZUEKU(uk—uk)—O
0 0

k=1
Yo € HA[0, L]

Newton-Raphson linearization for static case «"t1) = u(") + 4
!/L() dF /L dp
v
0 du o Ou

L L 2
+/ v - F dX—/ v-p dX—I—Zv}:KS)(uk—*&;G):[]
0 v k=1

Vv € H}[0, L]



2.9  Exact analytical 3D solution — verification of
numerical model

P = (): p2 = U = const. pP3 = const, Hl([]) — H_?‘([]) — H%([]) =0

Po
ot _ X +2D
szp—zo_ (\/CQJF(}?UXJFDP—\/(”JFD}) ot = paX
Po 2AEpo
ug = 2 (\/C? + (poX + D)2 —\/C2? + D? ) P T8 X
Pa ZflE Po

o 2 2
Do = \/.p?_ + p3. C & D are constants that may be found from two boundary

conditions ul = C, \/u} + ug L) = d.




2.10 Large deflections of inextensible catenary curve
MATHEMATICAL MODEL

differential equation:

[

2 | 2
o4 J _ v‘ 1+ (’f—”) in (0,L)

- dx
with kinematic boundary conditions

y(0) = Hy, y(L) = H;,

analytical solution

y = acosh (I — C) + D, z € [0, L]
1
conditions for the Newton — Raphson procedure

{ y(0) — Hy = 0 ALg — AL(T,)

y(L)— H. =0 where 1 + aT.
AL(T) — Lg(l +aT)=10 > o
*) v t AL(T:) =a lsinh ((_—) — sinh ((_ L)]

(I (L




2.11 MODELING OF SUSPENSION INSULATORS

Insulator suspension of length [ and weight

Insulator modeled as a rotating rigid body



2.12 Numerical analysis — methods and tests
used for theoretical solution approach

2.12.1 Objectives of numerical tests done
Comparison of:
(i)  various formulations of b.v. problem (strong, weak, hybrid mixed)

(i)  various discrete solution methods (FEM, variational MFDM, MLPG-5
MFDM)

(i) various types and orders of approximation
(iv) results obtained from different computer codes

(v) various types of loading (temperature, distributed loads and
concentrated forces)

Each time considered were: solution precision and convergence,
computational time.

Moreover the influence of

- elastic supporting structures

- different phases, ...

- number of spans considered
on cable deformation was analysed.



TEST DATA#1 (EP)
Comparison of methods 1. FEM , 2. MFDM , 3. MLPG-5/MFDM

313 nodes, computational time, 1: 9s, 2: 20s, 3: 44s
DEFLECTION [m], nodes = 313, elements = 312

0

-1

-2

-3

_4\

[$2]

[m] - |

-8

9

-10 -

1:3D: FEM-,U__ =0.672m,W__ =9.7791m,V___ =0m
max max max
2:3D: MFDM -,U__ =0.672m,W__ =9.8022m,V___ =0m
max max max

3:3D: MLPG5/MFDM -,U  =0.672m,W__ =9.8022m,V___ =0m
max max max

0.5

1: 8.3765m 1: 9.0744m

2:8.3941m 2:9.1148m
3:8.3941m 3:9.1148m

1:9.7791m
2:9.8022m
3:9.8022m

500
400

x [m]

—1:3D: FEM -
—2:3D: MFDM -

3:3D: MLPG5/MFDM -

9.77 m (EP)

900
800
700




TEST DATA #2 (EP)
FEM , MFDM , MLPG-5/MFDM results convergence for regular mesh

log(error)

-2

-2.2

-2.4

-2.6

-2.8

-3

-3.2

3.4

-3.6

-3.8

(ESTIMATED) SOLUTION ERROR CONVERGENCE
FOR LINEAR APPROXIMATION 3D FEM -

—=-3D: MFDM -
3D: MLPG5/MFDM -

MFDM (Meshless Finite Difference Method)
/' MLPG5/MFDM

(Meshless Local Petrov-Galerkin)

FEM (Finite Element Method)

: % 105 nodes

[ [ [ [ [ [ [ [

1.5 1.6 1.7 1.8 1.9 2 21 2.2

log(number of unknowns)



CONVERGENCE STUDY
o5 9 nodes
i _._Bavg
- .‘h“h-..\,. . emax
'“'.“"ea\lg
'""""emax
1.5 +Ba\'g
—-l—em“
-2
-5
g 65 nodes
= -3 - . G W
nr [ | | L} L} L} - ol ., S S S S S S - -
=2
a5 129 nodes
-4 5
5
o | | | | | |
a 20 401 Lt [+ 1] 103 120

h and p type convergence test

APPROXIMATION ORDER x NUMEE.R of NODES

40



TEST DATA #2 (EP)

Influence of chains of insulators (MFDM)
21 nodes, computational time, 1: 2s, 2: 2s, 3: 2s

DEFLECTION [m], nodes = 21, elements = 20
1: 3D: MFDM -, U =0.208m, W = 8.3959m, V =0m
max max max

2:3D: MFDM -, U =0.21894m, W = 7.4058m, V =0m
max max max

3:3D: MFDM -, U =0.22437Tm, W = 7.5556m, V =0m
max max max

——1: 3D: MFDM -
—=—2: 3D: MFDM -
——3: 3D: MFDM -

chain of insulators with
increased stiffness

chain of insulators with

1: 8.3959m iIncreased own weight

2: 7.4058m
3: 7.5556m

300

Z[m] u x [m]



1.4 Types of general mathematical formulations of 1,11, Il
problems

A) — Db.v. problem
measured cable inclination and rotation angles are not
taken into account

B) — nonlinear constrained optimization problem

all available data are considered including measured cable
Inclination and rotation angles

Mutual relation of tasks and types of problems

TASK I [ 1l

FORMULATION B A A, B
TYPE




2.6 Data

(i) Live (time dependent) parameters:

- T*.T (temperature, measured or computed)

- p (wind pressure determined on the basis of its direction and
velocity)

- ¢ (distributed loading due to ice and frost - magnitude possible

to be determined indirecly)

wt ~E (cable inclination angles measured at selected places)

- concentrated forces

(ii) Parameters determined by in-situ measurements
- Ty (initial temperature)
&o (position of the sensor)
L (unloaded cable length - determined indirectly)
ay, ..., ag (support coordinates)
- wo (T°), 70 (T5°), 56 (T57 ), wi' (TF), 27 (Tg). 51 (T, ..
(angles and sags for various temperatures for model validation)



2.6 Data continued

(iii) Material parameters:

- 1 - self-weight (dead load)

A - cable cross section area (effective)
E - cable Young's modulus (effective)
« - cable thermal expansion coefficient
3 - viscous parameter

L;,Q; - insulator parameters

K1, K5 - support stiffness matrices

(iv) Measurement accuracy:

- ep (of temperature)
(of angles)



MODELING OF SUSPENSION INSULATORS - continued

1
ta_ﬁQ_F'y ., u] =xrg +lcosa — X
go = F, wo = yp + I sin o

Such a condition is updated at each NR step

2 !
L, : \N.{ ............................ Lo ,,// |

H"‘“m,_h__h . T
T PP hah-\_‘ ................. _._H_.J_._d_ d_'_d___,_f.-."" ..... |

i | i |

Numerically determined deflection of a cable with insulator suspension

Another possibile modeling of insulator
» use the same equations as for the cable but assume larger
self-weight
» approximate insulator displacements by only 1 finite element
with linear shape functions



OPTIMIZATION PROCEDURE FOR VARIABLE CABLE LENGTH L AND TEMPERATURE T

1. solve above FBA problem assuming fixed values T=T° and L=L

2. fix T=T° wvary L, find L=L,

minimising cable curvature and  satisfying the constraint

L 2 2
mirlzc2 , Kzzij(jxvgj dX AL=|L-L%|<e =AL,,
0

3. fix L=Lkw varyT , find T=T,

minimising the same cable curvature «* while satisfying constraints AT = ‘T ~-T E‘ <e =AT__

— AL



