Density functional calculations show noncovalent interactions driving electrocatalysis

<u>Klemens Noga^{1,3}</u>, Piotr P. Romańczyk², Mariusz Radoń³, Stefan S. Kurek²

¹ Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Kraków, Poland

² Molecular Electrochemistry Group, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

³ Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland

klemens.noga@cyfronet.pl,piotrom@chemia.pk.edu.pl

Scientific interests

- Electron transfer mechanism between redox centres in mixed-valence molybdenum and tungsten scorpionates involved in electrocatalysis
- Dissociative electron transfer (DET) processes in dehalogenation of organic halides
- Role of noncovalent interactions in electrocatalysis and DET processes
- Computational estimation of reduction and oxidation potentials of transition metal complexes and organic compounds

Mo and W scorpionate alkoxides

 $Mo^{II}(NO)(Tp^{Me2}) OCH_3)_2$

Reversible redox potential fine tuned by alkoxy ligand RO⁻

- Redox potential of {M^{II/I}(NO)(Tp^{Me2})-O_{alk}}^{0/•-} (M = Mo or W) well reproduced by DFT:B3LYP/LACV3P+/ IEF-PCM:
 - $\{Mo-O_{Me}\}^{0/\bullet-}$ calculated: 1.80 V, measured: 1.84 V
 - $\{W-O_{Me}\}^{0/\bullet-}$ calculated: 2.45 V, measured: 2.40 V
- Strong metal-metal interactions (up to Δ_{red}E_{1/2} 1440 mV) in mixedvalence compounds with two {Mo^{II-0}(NO⁺)(Tp^{Me2})}^{2+,1+,0} cores

Electrocatalysis of of CHCl₃ dehalogenation by {Mo^I(NO)(Tp^{Me2})(O_{alkoxy})}^{•-}

Reduction of $CHCl_3$ by Hold-ramp-step experiment $\{Mo^{I}(NO)(Tp^{Me2})(O_{alkoxy})\}^{\bullet-}$ proving stability of catalyst

Inhibition of reaction by alkene

- CHCl₃ fast autocatalytic process
- CCl_4 and C_2Cl_4 do not react in those conditions, C_2HCl_5 and C_2HCl_3 typical electrocatalysis

DFT-D (COSMO/B3LYP-D3/def2-TZVPP) geometries of $\{Mo^{II/I}(NO)(Tp^{Me2})\}(OCH_3)_2$ adducts with CHCl₃

- Mo scorpionates form weakly bonded adducts with CHCl₃ through C–H…O_{alkoxy} hydrogen bond and dispersive interactions
- After reduction of Mo centre ΔE_{bind} increases

Role of {Mo^{II/I}(NO)(Tp^{Me2})(O_{alkoxy})}^{•-} in electrocatalysis - dehalogenation

DFT-D (COSMO/B3LYP-D3/def2-TZVPP) geometries of (a) $\{Mo^{I}(NO)(Tp^{Me^{2}})\}(OCH_{3})_{2}^{\bullet-}\cdots$ HCCl₃ adduct with elongated C-CI bond (up to 2.2 Å) in CHCl₃ (b) $\{Mo^{II}(NO)(Tp^{Me^{2}})\}(OCH_{3})_{2}\cdots$ HCCl₂[•] adduct after DET

 Weakly bonded {Mo^I(NO)(Tp^{Me2})}(OCH₃)₂^{•-}…HCCl₃ adduct facilitates electron transfer to chloroform coupled with C-Cl bond cleavage

Role of $\{W^{\parallel/|}(NO)(Tp^{Me2})(O_{alkoxy})\}^{\bullet-}$ in C_2HCl_5 and $C_2HCl_4^{\bullet}$ dehalogenation

DFT-D (COSMO/B3LYP-D3/def2-TZVPP) geometries of (a) $\{W^{I}(NO)(Tp^{Me2})\}(OCH_{3})_{2}^{\bullet-}\cdotsHC_{2}CI_{5}$ adduct (b) $\{W^{II}(NO)(Tp^{Me2})\}(OCH_{3})_{2}\cdotsHC_{2}CI_{4}^{\bullet}$ adduct after DET

 Weakly bonded {W^I(NO)(Tp^{Me2})}(OCH₃)₂^{•-}···HC₂Cl₅ adduct also facilitates electron transfer to pentachloroethane coupled with C-Cl bond cleavage

Thermodynamical stability of adducts

Adduct	ΔE_{bind}	ΔG_{bind}
{Mo ^{II} -O _{alk} } ⁰ ····HCCl ₃	-44.4	0.8
{Mo ^I -O _{alk} }•-···HCCl ₃	-52.3	-6,7
$\{Mo^{II}-O_{alk}\}^0\cdots HCCl_2^{\bullet}$	-37.2	6.3
$\{Mo^{I}-O_{alk}\}^{\bullet-}\cdots HC_{2}CI_{5}$	-53.6	-2.9
$\{Mo^{I}-O_{alk}\}^{\bullet-}\cdots HC_{2}CI_{3}$	-43.1	1.3
$\{Mo^{I}-O_{alk}\}^{\bullet-}\cdots H_{2}CCI_{2}$	-37.7	3.8
$\{W^{I}-O_{alk}\}^{\bullet-}\cdots HC_{2}Cl_{5}$	-54.8	-5.0
$\{W^{II}-O_{alk}\}\cdots HC_2Cl_4^{\bullet}$	-46.4	1.7
$\{W^{I}-O_{alk}\}^{\bullet-}\cdots HC_{2}Cl_{4}^{\bullet}$	-56.1	-5.4
$\{W^{I}-O_{alk}\}^{\bullet-}\cdots HC_{2}Cl_{3}$	-44.4	0.4
$\{W^{I}-O_{alk}\}^{\bullet-}\cdots H_{2}CCl_{2}$	-41.0	1.7

in kJ·mol⁻¹ in CH_2Cl_2 solvent, BSSE corrected

- {Mo^I-O_{alk}}•-···HCCl₃ and {W^I-O_{alk}}•-···HC₂Cl₅ stabilisation facilitates ET
- Lower stability of {Mo^{II}-O_{alk}}⁰...HCCl₂• and {W^{II}-O_{alk}}...HC₂Cl₄• enables radical dissociation and triggers another catalytic loop

Molecular catalysis of CHCl₃ and C₂HCl₃ reduction triggered by Mo/W alkoxy scorpionates

(a)

(b)

- CHCl₃ dehalogenation two catalytic loops, with autocatalytic reaction: 2CHCl₃ + CCl₂^{•−} + 3e[−] → CH₂Cl₂ + 2CCl₂^{•−} + 2Cl[−]
- For C₂HCl₃ even more cathodic W^{II/I} redox potential not sufficient to close second organic loop

Redox potentials of compounds involved in C_2HCl_5 reduction

Species	E ⁰ _{calc} (DFT-D)	E ⁰ _{calc} (CC)	E ⁰ _{exp}
{W ^{II} -O _{Me} }/{W ^I -O _{Me} }•-	-2.45	—	-2,40
{W ^{III} -O _{Me} }•+/{W ^{II} -O _{Me} }	+0.68	—	+0.63
C ₂ HCl ₅ /C ₂ HCl ₄ • + Cl [−]	-0.66	-1.27 (-1.01)	(–0.98)
$C_2HCl_4^{\bullet}/C_2HCl_3 + Cl^{-}$	+0.93	+0.80	
$C_2HCl_3/cis-C_2HCl_2^{\bullet}+Cl^{-}$	-1.66	-2.12 (-1.86)	(-1.86)
$cis-C_2HCl_2^{\bullet}/cis-C_2HCl_2^{-}$	-0.42	-0.48	
$cis-C_2H_2Cl_2/cis-C_2H_2Cl^{\bullet}+Cl^{-}$	-1.97	-2.36 (-2.10)	(-2.09)
$cis-C_2H_2Cl^{\bullet}/C_2H_2 + Cl^{-}$	+0.99	+0.91 (+1.18)	
$C_2Cl_4/C_2Cl_4^{\bullet-}$	-2.32 (-2.14)	-2.66 (-2.48)	(-2.11)
$C_2Cl_4/C_2Cl_3^{\bullet} + Cl^{-}$	-1.57	-2.09 (-1.82)	(-1.73)
$C_2Cl_3^{\bullet}/C_2Cl_3^{-}$	-0.24	-0.24	
$C_2HCI/C_2H^{\bullet}\cdots CI^{-}$	-2.12	-2.55 (-2.32)	
$C_2HCI/C_2H^{\bullet} + CI^{-}$	-2.72	-2.94 (-2.68)	
$C_2HCI/C_2H^{\bullet} + CI^{-}$	-2.72	-2.94 (-2.68)	

in V vs Fc, obtained in CH₂Cl₂ solvent (or DMF)

 Significant differences between DFT-D and CC results only in the case of dissociative reduction (due to errors in estimation of C-Cl bond strength in DFT)

Inhibition of catalysis

DFT-D (COSMO/B3LYP-D3/def2-TZVPP) geometries of (a) alcohol adduct, (b) alkene adduct

- Alcohols form stronger hydrogen bond than CHCl₃ and block the binding site
- Alkenes and DMF are bonded significantly weaker than CHCl₃
 - when added in great excess
 - inhibition occurs by trapping of transient CHCl2• radical by alkene or :CCl2 by DMF

Role of noncovalent interactions in electrocatalycis

Comparison of DFT-D (sharp, Cl atoms yellow) and DFT (diffused, Cl atoms green) (a) {Mo^{II}-O_{alk}}··HCCl₃, (b) {Mo^I-O_{alk}}^{•-}···HCCl₃, (c) {Mo^I-O_{alk}}⁰···HCCl₂[•]

- Significant differences in adducts geometries, especially in {Mo^I-O_{alk}}
 ⁰...HCCl₂, where hydrogen bond is weaker and has dispersive character
- Noncovalent interactions are crucial for stabilisation of adducts with weak hydrogen bond

Role of noncovalent interactions in electrocatalysis

Adduct	DFT	DFT//DFT-D3	DFT-D3 Opt
{Mo ^{II} –O _{alk} } ⁰ ····HCCl ₃	4.2	-32.2	-44.4
{Mo ^I -O _{alk} }•-···HCCl ₃	-4.2	-42.7	-52.3
{Mo ^{II} –O _{alk} }•-···HCCl ₂ •	2.1	-23.8	-37.2
{Mo ^I -O _{alk} }•-···HOCH ₃	-22.2	-52.3	-56.1
$\{Mo^{I}-O_{alk}\}^{\bullet-}\cdots HC(=O)N(CH_{3})_{2}^{a}$	10.5	-22.6	-30.1
$\{W^{I}-O_{alk}\}^{\bullet-}\cdots H_{2}C=CHCH_{3}$	12.6	-11.3	-22.6

 ΔG_{bind} in kJ·mol⁻¹ in CH₂Cl₂ solvent (a in DMF), BSSE corrected

- Noncovalent interactions are crucial for stabilisation of adducts with weak hydrogen bond
- Even {Mo^I-O_{alk}}^{•-}····HOCH₃ adduct with strong H-bond shows stabilisation effect from dispersive interactions
- Geometry optimization using DFT-D3 strongly recommended

Software remarks and computational details

- Gaussian03 and Gaussian09
 - used for DFT geometry optimizations and redox potentials calculations
 - wide spectrum of solvation methods
- Turbomole 6.x and 7.x
 - used for DFT-D3 geometry optimizations
 - very fast in geometry optimizations and BSSE estimations
 - only numerical frequencies calculations when COSMO model is used
 - embarrassingly parallel but consume big amount of resources (up to 120 cores for week)
- Molpro 2012 and 2015
 - used for parallel CCSD(T) calculations
 - can consume great amount of resources (up to 200 cores for weeks) due to scaling factor of O(N⁷)

Outcome

- Rationalized mechanism of electrocatalytic dehalogenation of polychloroalkanes by Mo and W scorpionate alkoxides and its inhibition
 - combined action of C–H···O_{alk} bonding and Cl··· $\pi_{pyrazolyl}$ dispersive interactions may facilitate intramolecular electron transfer
- Shown that dispersion interactions could be crucial for stabilisation of weakly bonded adducts
 - DFT-D has to be used in such cases to yield reasonable results
- Established computational protocol for calculation of redox potentials for investigated Mo/W alkoxides and for organic chlorides with the accuracy of up to 0.05 V
- Computational resources have been provided by ACC Cyfronet AGH which is part of PLGrid Infrastructure

Publications

- P. P. Romańczyk, M. Radoń, K. Noga, S. S. Kurek, Autocatalytic cathodic dehalogenation triggered by dissociative electron transfer through a C–H…O hydrogen bond, *Phys. Chem. Chem. Phys.* 15 (2013) 17522.
- P. P. Romańczyk, K. Noga, M. Radoń, G. Rotko, S. S. Kurek, On the role of noncovalent interactions in electrocatalysis. Two cases of mediated reductive dehalogenation, *Electrochim. Acta*, 110 (2013) 619.
- P. P. Romańczyk, G. Rotko, K. Noga, M. Radoń, G. Andryianau, S. S. Kurek, The effect of C–H…O bonding and Cl…π interactions in electrocatalytic dehalogenation of C2 chlorides containing an acidic hydrogen, *Electrochim. Acta* 140 (2014) 497.