Computational studies on Li⁺-Oligoglyme Association in the Presence of Ionic Liquid

Andrzej Eilmes, Piotr Kubisiak

Jagiellonian University, Faculty of Chemistry

KUKDM 16, Zakopane, 18.03.2016

Motivation

- Polymer electrolytes (eg. PEO+lithium salt) are used in ion batteries, fuel cells, electrochemical devices
- Strong Li⁺-polymer interactions and low segmental mobility of polymer decrease ion mobility limit and conductivity of the electrolyte
- Low-weight molecular solvents are commonly used as additives (plasticizers) to improve properties of polymer electrolytes
- Promising alternative to classical molecular solvents are ionic liquids (non-flammable, non-volatile, stable)
- Increased number of experimental works is devoted to ternary PEO/lithium salt/IL electrolytes; computational studies on this subject are less frequent

Investigated systems

Molecular Dynamics simulations:

- ternary electrolytes: LiAn salt in hexaglyme with increasing content of EMIM-An ionic liquid
- An = BF_4^- , PF_6^- , $B(CN)_4^-$, FSI^- , $TFSI^-$
- IL mass percentage: 0, 10, 20 and 50%
- polarizable force-field (based on APPLE&P and our own parameterization) and Tinker v. 5 package
- 15 25 ns NPT simulations (T = 400 K)

Investigated systems

Sequential MD/QC calculations:

- 5 ns NVT MD simulations for Li⁺-oligoglyme complex (frozen at QC geometry) in hexaglyme and ionic liquids
- structures of Li-glyme complex (solute) solvated in increasing amount of hexaglyme or IL extracted using Trajectory Sculptor
- interaction and binding energies calculated using force field or DFT

MD results: structures of electrolytes

- structure of the electrolyte and its homogeneity depends on the salt/IL anion
- phase separation in systems with ${\rm BF_4^-}$ and ${\rm PF_6^-}$
- more homogeneous electrolytes with TFSI⁻, FSI⁻ or $B(CN)_4^-$

MD results: Li⁺ coordination

Li⁺ coordination to hexaglyme and anions, 400 K, 50% IL:

n _c	BF ₄ ⁻	PF ₆ ⁻	TFSI-	FSI⁻	B(CN) ₄ -
HG	0.1	2.1	2.2	3.9	4.5
An	4.7	2.2	2.4	0.7	0.1

- \bullet in systems with EMIM-BF_4 Li^+ ions reside in IL phase
- in HG/EMIM-FSI or EMIM-B(CN)₄ Li⁺ coordinate to hexaglyme
- intermediate coordination in HG/EMIM-PF $_6$ or EMIM-FSI

Can we rationalize it from binding energies?

Energy calculations

- Li⁺- glyme binding energies and interaction energies in vacuum and in explicit solvent
- energies calculated from force field or at the CAM-B3LYP/ 6-31+G* level
- thermodynamic cycle used to obtain values in the solvent

Energy calculations: QC versus FF

- energies calculated from force field or at the CAM-B3LYP/ 6-31+G* level
- TeraChem v. 1.5K used to obtain QC values
- FF-based values reproduce fairly well trends obtained from prohibitively expensive QC calculations

Energies: dependence on the number of solvent ions/molecules

- calculated values depend on the amount of solvent surrounding the solute
- in hexaglyme energies decresae monotonically
- oscillations appear in ILs, because of structured solvation shell

interaction energies

Energies: dependence on the number of solvent ions/molecules

- calculated values depend on the amount of solvent surrounding the solute
- in hexaglyme energies change rather monotonically
- oscillations appear in ILs, because of structured solvation shell

binding energies

Binding energies in explicit solvent

 relative binding energies of Li⁺-glyme in different ionic liquids correlate with structure of electrolytes and preferred coordination of Li cations

Summary

- structures of LiAn/hexaglyme/EMIM-An electrolyte and Li⁺ coordination depend on the anion An⁻
- long-range electrostatic interactions and structure of solvation shell cause necessity to include fairly large amount of solvent in explicit solvent calculations
- binding energies of Li⁺-glyme in different liquids help to understand observed structures of electrolytes
- implicit solvent models will not predict differences between investigated ionic liquids; explicit approach is necessary
- A. Eilmes, P. Kubisiak, Li⁺-Oligoglyme Association in the Presence of Ionic Liquid Studied by Molecular Dynamics and Explicit or Implicit Solvent Model, J. Phys. Chem. B 2015, 119, 11708.

Ackowledgments

Co-worker:

Dr Piotr Kubisiak (UJ)

PL-Grid infrastructure was used in calculations

This work was supported by the grant no. 2012/07/B/ST4/00573

GTC VII

CURRENT TRENDS IN THEORETICAL CHEMISTRY VII Kraków, Poland, 4-8 September, 2016 http://www2.chemia.uj.edu.pl/cttc7/

INVITED SPEAKERS:

- Paul Ayers
- Wesley Browne
- Gernot Frenking
- Stefan Grimme
- Trygve Helgaker
- Jacek Komasa

- Andreas Klamt
- Jacob Kongsted
- Eugene Kryachko
- Katarzyna Pernal
- Piotr Piecuch
- Marcel Swart

KEYNOTE SPEAKERS:

- Yuriko Aoki
- Jaroslav Burda
- Benoît Champagne
- Łukasz Ćwiklik
- Michał Cyrański
- Frank De Proft
- Ireneusz Grabowski

- Radek Marek
- Monika Musiał
- Sourav Pal
- John Parkhill
- Angel Pendas
- Fabrizio Santoro

