Future e+e- accelerators computing challenges and requirements

Tomasz Wojtoń

Institute of Nuclear Physics PAN, Kraków

KU KDM'16 Zakopane 16-18 march 2016

Advantages of e⁺e⁻ colliders

p-p collisions	e⁺e ⁻ collisions
Proton is compound objectInitial state not known (variety of processes)Limits achievable precision	 e⁺/e⁻ are point-like Initial state well defined High-precision measurements
High rates of QCD backgroundsComplex triggering schemesHigh levels of radiation	Cleaner experimental environmentTrigger-less readoutLow radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states

Hammer vs scalpel

Hammer: LHC

Scalpel: e⁺e⁻ collider

Projects of future e⁺e⁻ colliders

Projects of future e⁺e⁻ colliders

Circular colliders

FCC-ee

CEPC

Challenges for the computing system

- Exploring the opportunities which would be provided by the future e⁺e⁻ colliders needs large scale Monte Carlo simulations
- Monte Carlo studies are performed for:
 - physics benchmarks
 - detector optimization variations of individual detector parameters
 - test beam data analysis

Monte Carlo production

- The Monte Carlo (MC) production campaign was the largest consumer of resources. There are three job types:
 - MC generation to generate particles,
 - MC simulation to simulate interaction of particles with the detectors,
 - MC reconstruction to reconstruct observable from deposited energy in detectors.

Software developing

- The new simulation framework was created.
- Integration of ILC Software with DIRAC iLCDirac
- Easy interfaces for users to create and send jobs

from DIRAC.Core.Base import Script
Script.parseCommandLine()
import UserJob
import Marlin
import DiracILC
d = DiracILC()
j = UserJob()
j.setOutputSandbox("recEvents.slcio")
m = Marlin()
m.setVersion("ILCSoft-01-17-09")
m.setSteeringFile("Steering.xml")
m.setInputFile("SimEvents.slcio")
j.append(m)
j.submit(d)

Computing resources

- 41 sites available on the world (including CYFRONET)
- Reached a peak of 20 000 jobs in parallel
- Overall consumed CPU time ~1700 CPU years in 2015.
- On the summer of 2016 the big MC production is planned \rightarrow more resources will be required

Optimization

- Reduce size of produced data
 - Above 1PB full MC events information
 - ~20TB subset of the data required for most of physics analysis
- Computational granularity of jobs

Summary

- A new electron-positron accelerator is expected for future particle physics.
- Large amount cores and storage will be required for centralized MC production.
- Performance measurements and optimization are important.

