Konferencjo Užutkowników Komputerów Dużcj Mocy
 Zakopane, 16-18 marca 2016 r.

HYBRID ON-LINE MEASUREMENT AIDED EVALUATION OF SAFE OVERHEAD POWER LINE CLEARANCE

(EKSPERYMENTALNIE WSPOMAGANE OSZACOWANIE
BEZPIECZNEJ SKRAJNI LINII ENERGETYCZNYCH WYSOKICH NAPIĘĆ)

Sławomir Milewski, Witod Cecot, Janusz Orkisz
Institute for Computational Civil Engineering Cracow University of Technology

1. INTRODUCTION

1. INTRODUCTION

1.1 Research subject

Today talk is about energy transmission by overhead power lines. Everybody needs this energy. Are there any obstacles in energy transmission?

```
troubles
reality
change proposed
```

effect
consortium
sponsorship

- limited level of energy supply
- ageing (40 years) infrastructure
- only two allowed transmission safety thresholds: summer (high temperature) and winter (ice)
- Dynamic Management of Safe Power Transmission using innovative on-line (SDZP) measurements
- estimated gain

> DMSET < 15\%
graphene 100\% $\div 200 \%$

- Universities 5, Polish Academy of Sciences, Companies 2, Network operators 3
- Ecologic Concepts Generator (GEKON)

1. INTRODUCTION

GEKON Project:

Ecologic Concepts Generator - National Foundation

SDZP Project - consortium
Dynamic management of transmission abilities of overhead power transmission lines using innovative measurement techniques

This research

Measurements aided numerical analysis of large 3D displacements of extensible cables in overhead power transmission lines

CONTENTS

1. Introduction
2. Formulation of mechanical and mathematical models of 3D cable displacements
3. Modeling of insulators
4. Numerical analysis used for theoretical approach
5. Hybrid theoretical-experimental analysis of overhead power transmission lines
6.Final remarks

1. INTRODUCTION

1.2 Problem characteristics

1.3 Main objectives of the research program

SDZP project

- Provide ways and tools for the optimal dynamic management of safe overhead power transmission

Our research

- Using innovative on-line measurements develop reliable and efficient tools of 3D on-line analysis of conductors behaviour in overhead power transmission lines.
- Examine various mechanical models, their mathematical formulations (strong, weak, hybrid mixed), and discrete solution methods (FEM, MFDM, PBA) in order to find the best solution approach.

1.4 Categories of engineering tasks involved

I. Evaluation of the actual, and the maximum current safety of overhead power transmission lines based on technical data, and all on-line measurements
II. Prediction of overhead power transmission lines behaviour based on technical data and weather forecast (6-72 h only) while on-line data are not available
III. Verification of weather forecast data against measured on-line data, and evaluation of prediction quality of overhead power transmission lines behaviour
1.5 Types of general mathematical formulations of \mathbf{i}, $\mathbf{i i}$, $\mathbf{i i}$ problems
A) - b.v. problem measured cable inclination and rotation angles are not taken into account
B) - nonlinear constrained optimization problem all available data are considered including measured cable inclination and rotation angles

Mutual relation of tasks and types of problems

TASK	I	II	III
FORMULATION TYPE	B	A	A, B

2. FORMULATION OF MECHANICAL AND MATHEMATICAL MODELS OF 3D CABLE DISPLACEMENTS

2.1 Solution approach strategy

Special care about:

- assumptions made for modeling cables behaviour in a way possibly close to real conductors condition
- high reliability of results obtained due to
- use of several different solution approaches
- solution stability
- comparison of our results with other sources of information
- a-posteriori error analysis
- solution efficiency
(low computational time, and high solution convergence rate)

2.2 On reliability of results obtained

Comparison and checking results obtained from various models

- 3 models 1D (inextensible and extensible), 2D, 3D
- 3 mathematical formulations
- 1 strong (non-linear PDE)
- 2 weak (variational principle)
- global
- hybrid mixed global-local (MLPG-5)
- 2 discretization methods
- FEM
- MFDM (Meshless Finite Difference Method)
- various approximation orders (1-6)
- 3 methods of non-linear analysis (simple iterations, Newton-Raphson, relaxation)
- 3 independent computer codes (2 own +1 commercial)
- a-posteriori error analysis
- large variety of numerical tests

REFERENCES

1. Y. Huang and W. Lan. Static analysis of cable structure. Applied Mathematics and Mechanics, 27:1425-1430, 2006.
2. J. Orkisz. Finite difference method (Part III). Handbook of computational solid mechanics. Springer-Verlag, 1998.
3. W. Karmowski and J. Orkisz. A physically based method of enhancement of experimental data - concepts, formulation and application to identification of residual stresses. Proc IUTAM symp on inverse problems in eng mech, Tokyo, 1:61-70, 1993.
4. Huu-Tai Thai and Seung-Eock Kim. Nonlinear static and dynamic analysis of cable structures. Finite Elements in Analysis and Design, 47(3):237-246, 2011.
5. W. Cecot, S. Milewski, J. Orkisz, Measurement aided computation of extensible cable deflections, Proceedings of the 21st International Conference on Computer Methods in Mechanics, pp.215-216.
2.3 Basic assumptions for modeling of overhead power line cables

- $0<E A<\infty$ - extensibility, no compression $(\varepsilon>0)$
- $E I=0$ - no resistance to bending $(M=0)$
- thermoelastic constitutive relation $\sigma=E(\varepsilon-\alpha \Delta T)>0$
- large displacements in 3D
- small strains
- distributed (self-weight, frost, 'wind') and concentrated loading
- elastic supporting structures with suspension insulators

2.4 Data

(i) Live (time dependent) parameters:

- T^{E}, T (temperature, measured or computed)
- p (wind pressure determined on the basis of its direction and velocity)
- q (distributed loading due to ice and frost - magnitude possible to be determined indirecly)
- ω^{E}, γ^{E} (cable inclination angles measured at selected places)
- concentrated forces
(ii) Parameters determined by in-situ measurements
- T_{0} (initial temperature)
- ξ_{0} (position of the sensor)
- L (unloaded cable length - determined indirectly)
- a_{1}, \ldots, a_{6} (support coordinates)
- $\omega_{0}^{E}\left(T_{0}^{E}\right), \gamma_{0}^{E}\left(T_{0}^{E}\right), s_{0}^{E}\left(T_{0}^{E}\right), \omega_{1}^{E}\left(T_{1}^{E}\right), \gamma_{1}^{E}\left(T_{0}^{E}\right), s_{1}^{E}\left(T_{1}^{E}\right), \ldots$ (angles and sags for various temperatures for model validation)

2.4 Data continued

(iii) Material parameters:

- μ - self-weight (dead load)
- A - cable cross section area (effective)
- E - cable Young's modulus (effective)
- α - cable thermal expansion coefficient
- β - viscous parameter
- L_{i}, Q_{i} - insulator parameters
- K_{1}, K_{2} - support stiffness matrices
(iv) Measurement accuracy:
- e_{T} (of temperature)
- $e_{\omega, \gamma}$ (of angles)
2.5 Boundary value problem type A - strong formulation Find displacement components (in total Lagrangian description):

$$
u_{1}(X, t), u_{2}(X, t), u_{3}(X, t), \quad X \in[0, L], \quad L=L(\beta, t)
$$

$$
\begin{cases}\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}-F_{i}^{\prime}=p_{i} & \text { linear momentum } \\ F_{i}=A E \frac{\varepsilon-\alpha \Delta T}{\varepsilon+1}\left(\delta_{1 i}+u_{i}^{\prime}\right) & \text { constitutive relation } \\ \varepsilon=\sqrt{\left(1+u_{1}^{\prime}\right)^{2}+\left(u_{2}^{\prime}\right)^{2}+\left(u_{3}^{\prime}\right)^{2}}-1 & \text { strain definition } \\ \boldsymbol{F}+\boldsymbol{K}^{s}(\boldsymbol{u}-\hat{\boldsymbol{u}})=0(\text { elastic supports }) & \text { b.c. for } X=0, L \\ + \text { initial conditions } & \end{cases}
$$

$i=1,2,3$
L - unloaded cable length
F_{i} - axial force components
K^{s} - elastic support stiffness matrix
$\hat{\boldsymbol{u}}-u n l o a d e d$ support position

$$
\text { deflection curve } \gamma:\left\{\begin{array}{l}
x=X+u_{1}(X) \\
y=u_{2}(X) \\
z=u_{3}(X)
\end{array}\right.
$$

2.6 Boundary value problem type A - weak formulation $\boldsymbol{u} \in H^{1}[0, L]$
$\int_{0}^{L} \rho \boldsymbol{v} \cdot \ddot{\boldsymbol{u}}+\int_{0}^{L} \boldsymbol{v}^{\prime} \cdot \boldsymbol{F} \mathrm{d} X-\int_{0}^{L} \boldsymbol{v} \cdot \boldsymbol{p} \mathrm{~d} X+\sum_{k=1}^{2} \boldsymbol{v}_{k}^{T} \boldsymbol{K}_{k}^{(s)}\left(\boldsymbol{u}_{k}-\hat{\boldsymbol{u}}_{k}\right)=0$ $\forall v \in H_{0}^{1}[0, L]$

Newton-Raphson linearization for static case $\boldsymbol{u}^{(n+1)}=\boldsymbol{u}^{(n)}+\psi$

$$
\begin{aligned}
& \int_{0}^{L}\left(\boldsymbol{v}^{\prime}\right)^{T} \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}^{\prime}} \boldsymbol{\psi}^{\prime} \mathrm{d} X-\int_{0}^{L} \boldsymbol{v}^{T} \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{u}^{\prime}} \boldsymbol{\psi}^{\prime} \mathrm{d} X+ \\
&+ \int_{0}^{L} \boldsymbol{v}^{\prime} \cdot \boldsymbol{F} \mathrm{d} X-\int_{0}^{L} \boldsymbol{v} \cdot \boldsymbol{p} \mathrm{~d} X+\sum_{k=1}^{2} \boldsymbol{v}_{k}^{T} \boldsymbol{K}_{k}^{(s)}\left(\boldsymbol{u}_{k}-\hat{\boldsymbol{u}}_{k}\right)=0 \\
& \forall \boldsymbol{v} \in H_{0}^{1}[0, L]
\end{aligned}
$$

2.7 Exact analytical 3D solution - verification of numerical model

$$
\begin{aligned}
& p_{1}=0 ; p_{2}=\mu=\text { const, } p_{3}=\text { const, } u_{1}(0)=u_{2}(0)=u_{3}(0)=0 \\
& u_{1}= \\
& \frac{C t}{p_{0}} \log \left(\frac{p_{0} X+D+\sqrt{C^{2}+\left(p_{0} X+D\right)^{2}}}{D+\sqrt{C^{2}+D^{2}}}\right)+\left(\frac{C}{A E}-1\right) X \\
& u_{2}= \\
& \frac{p_{2} t}{p_{0}^{2}}\left(\sqrt{C^{2}+\left(p_{0} X+D\right)^{2}}-\sqrt{C^{2}+D^{2}}\right)+\frac{p_{0} X+2 D}{2 A E p_{0}} p_{2} X \\
& u_{3}= \\
& \frac{p_{3} t}{p_{n}^{2}}\left(\sqrt{C^{2}+\left(p_{0} X+D\right)^{2}}-\sqrt{C^{2}+D^{2}}\right)+\frac{p_{0} X+2 D}{2 A E p_{0}} p_{3} X \\
& p_{0}=\sqrt{p_{2}^{2}+p_{3}^{2}} . \quad \mathrm{C} \& \mathrm{D} \text { are constants that may be found from two boundary } \\
& \quad \text { conditions } \quad u_{1}(L)=c, \sqrt{u_{2}^{2}(L)+u_{3}^{2}(L)}=d .
\end{aligned}
$$

2.7 continued

Exact analytical 3D solution - verification of numerical model

- Comparison of numerical (continuous lines) and closed form (dotted lines) solutions. The error may be aribtrarily small.
2.8 FEM approximation with Legendre polynomials

Error convergence (for u and for u^{\prime}) vs. time for $\mathrm{p}=1,2, \ldots, 6$ and a typical exemplary problem

2.9 FEM approximation - optimal discretization

- Number of degrees of freedom and time of computation (as a multiple of the shortest time) for various orders of approximation ($p=1,2, \ldots, 5$).
- Optimal discretization: 2-3 element of order 3-4 (20-40 dof).
2.10 Meshless Finite Difference Method (MFDM) solution approach Moving Weighted Least Squares (MWLS) approximation
- low order ($p=1,2$)

$u_{i}{ }^{\prime} \approx L u_{i}=a_{i-1} u_{i-1}+a_{i} u_{i}+a_{i+1} u_{i+1} \quad, \quad a_{i-1}, a_{i}, a_{i+1} \in \mathfrak{R}$
- higher order ($p>2$)
(i) MFD stars using increased number of nodes

(ii) correction terms for low order operator

2.11 Meshless Local Petrov-Galerkin (MLPG-5) formulation of b.v. problem

Test function: $\quad v=1->v \prime=0$

$$
\begin{aligned}
& -\int_{x_{0_{(k)}}}^{x_{1(k)}} \Delta p_{i, j} \frac{\partial \psi_{j}}{\partial X} d X_{(k)}-\left(\Delta F_{i, j}\left(x_{1_{(k)}}\right) \frac{d \psi_{j}}{d X}\left(x_{1_{(k)}}\right)-\Delta F_{i, j}\left(x_{0_{(k)}}\right) \frac{d \psi_{j}}{d X}\left(x_{0_{(k)}}\right)\right)+ \\
& \quad-\int_{x_{0_{(k)}}}^{x_{1(k)}} p_{i} d X_{(k)}=0 \quad, \quad i, j=1,2,3 \quad, \quad \forall_{k=2, \ldots, n-1}
\end{aligned}
$$

Notice: SAE are of similar type here as these for the FEM and MFDM (weak formulation).
However, in the stiffness matrix K one integral disappears. Moreover, new boundary terms emerge in the endpoints of the integration element.

3. MODELING OF SUSPENSION INSULATORS continued

Insulator suspension of length l and weight Q

Insulator modeled as a rotating rigid body

3. MODELING OF SUSPENSION INSULATORS

$$
\operatorname{tg} \alpha=\frac{\frac{1}{2} Q-F_{y}}{F_{x}} \Rightarrow\left\{\begin{array}{l}
u_{1}=x_{0}+l \cos \alpha-X \\
u_{2}=y_{0}+l \sin \alpha
\end{array}\right.
$$

Such a condition is updated at each NR step

Numerically determined deflection of a cable with insulator suspension

Another possibile modeling of insulator

- use the same equations as for the cable but assume larger self-weight
- approximate insulator displacements by only 1 finite element with linear shape functions

4 NUMERICAL ANALYSIS - METHODS AND TESTS USED FOR THEORETICAL SOLUTION APPROACH

4.1 Objectives of numerical tests done

Comparison of:
(i) various formulations of b.v. problem (strong, weak, hybrid mixed)
(ii) various discrete solution methods (FEM, variational MFDM, MLPG-5 MFDM)
(iii) various types and orders of approximation
(iv) results obtained from different computer codes
(v) various types of loading (temperature, distributed loads and concentrated forces)

Each time considered were: solution precision and convergence, computational time.
Moreover the influence of

- elastic supporting structures
- different phases, ...
- number of spans considered
on cable deformation was analysed.
4.2 TEST DATA \#1 (3D), from

A new deformable catenary element for the analysis of cable net structures, A. Andreu, L. Gil, P. Roca, Comp \& Struct, 2006

$$
\begin{aligned}
& \mathrm{E}=1.31045 \mathrm{GPa}, \mathrm{~A}=5.48 \mathrm{e}-4 \mathrm{~m}^{2} \\
& \mathrm{~L}=312.73 \mathrm{~m}, \mathrm{~L}_{\mathrm{c}}=304.8 \mathrm{~m} \\
& \alpha=20 \mathrm{e}-61 / \mathrm{K}, \Delta \mathrm{~T}=3 \mathrm{~K}, \mu=5 \mathrm{~N} / \mathrm{m}, \mathrm{H}_{1}=\mathrm{H}_{2} \\
& \mathrm{q}_{\mathrm{x}}=\mathrm{q}_{\mathrm{y}}=\mathrm{q}_{\mathrm{z}}=-20 \mathrm{e}-3 \mathrm{~N} / \mathrm{m} \quad \text { and } / \mathrm{or} \quad P_{x}=P_{y}=P_{z}=-35.5979 \mathrm{~N}
\end{aligned}
$$

TEST DATA \#2 (ENERGOPROJEKT, 2D): line AFL-6 120 mm²

$$
\begin{aligned}
& \mathrm{E}=75.188 \mathrm{GPa}, \mathrm{~A}=1.435 \mathrm{e}-4 \mathrm{~m}^{2} \\
& \mathrm{~L}=260 \mathrm{~m}+280 \mathrm{~m}+300 \mathrm{~m}, \mathrm{~L}_{\mathrm{c}}=260.71 \mathrm{~m} \\
& \alpha=1.87 \mathrm{e}-61 / \mathrm{K}, \Delta \mathrm{~T}=0 \mathrm{~K} \div 80 \mathrm{~K}, \mu=4.95 \mathrm{~N} / \mathrm{m}, \mathrm{H}_{1}=\mathrm{H}_{2} \\
& \mathrm{q}_{\mathrm{x}}=\mathrm{q}_{\mathrm{y}}=0 \mathrm{~N} / \mathrm{m} \text { and } P_{x}=P_{y}=0 \mathrm{~N}
\end{aligned}
$$

Additional data assumed
number of load increments
number of nodes in a span
numerical error tolerance
starting configuration
$M=5 \div 100$
$21 \div 105$
1e-16
catanary curve
4.3 Analysis of benchmark problems

TEST DATA \#1-distributed loads
Comparison of methods 1. FEM, 2.MFDM, 3. MLPG-5/MFDM 21 nodes, computational time 1: $2 \mathrm{~s}, 2$: $4 \mathrm{~s}, 3$: 10 s

$$
\begin{aligned}
& \text { DEFLECTION }[\mathrm{m}], \text { nodes }=21, \text { elements }=20 \\
& \text { 1: 3D: FEM-, } U_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\max }=34.8974 \mathrm{~m}, \mathrm{~V}_{\max }=6.3189 \mathrm{~m} \\
& \text { 2: 3D: MFDM - } \mathrm{U}_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\max }=34.9505 \mathrm{~m}, \mathrm{~V}_{\max }=6.3277 \mathrm{~m} \\
& \text { 3: 3D: MLPG5/MFDM }-, U_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\max }=34.9476 \mathrm{~m}, \mathrm{~V}_{\max }=6.326 \mathrm{~m}
\end{aligned}
$$

TEST DATA \#1 concentrated forces Comparison of methods 1. FEM , 2. MFDM , 3. MLPG-5/MFDM

21 nodes, computational time, 1: 1s, 2: 2s, 3: 5s

$$
\begin{gathered}
\text { DEFLECTION [m], nodes }=21 \text {, elements }=20 \\
\text { 1: 3D: }{ }^{\text {FEM }-, U_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\max }=62.862 \mathrm{~m}, \mathrm{~V}_{\max }=0 \mathrm{~m}} \\
\text { 2: 3D: MFDM-, } \mathrm{U}_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\max }=63.6194 \mathrm{~m}, \mathrm{~V}_{\max }=0 \mathrm{~m} \\
\text { 3: 3D: MLPG5/MFDM }-, U_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\max }=63.6116 \mathrm{~m}, \mathrm{~V}_{\max }=0 \mathrm{~m}
\end{gathered}
$$

$-1: 3 D:$ FEM -
- -2: 3D: MFDM -
$-3: 3 D: M L P G 5 / M F D M-$

TEST DATA \#1 (EP)

Comparison of methods 1. FEM , 2. MFDM , 3. MLPG-5/MFDM

313 nodes, computational time, 1:9s, 2: 20s, 3: 44s
DEFLECTION [m], nodes $=313$, elements $=312$
1: 3D: FEM - , $U_{\text {max }}=0.672 \mathrm{~m}, \mathrm{~W}_{\text {max }}=9.7791 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$
2: 3D: MFDM - , $U_{\text {max }}=0.672 \mathrm{~m}, \mathrm{~W}_{\text {max }}=9.8022 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$
3: 3D: MLPG5/MFDM - , $U_{\text {max }}=0.672 \mathrm{~m}, \mathrm{~W}_{\text {max }}=9.8022 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$

TEST DATA \#2 (EP)
FEM , MFDM , MLPG-5/MFDM results convergence for regular mesh log(error)

TEST DATA \#1 - distributed loads
MFDM various ($1,2,3$) approximation orders
21 nodes, computational time, 1:4s, 2: 10s, 3: 20s
DEFLECTION [m], nodes $=21$, elements $=20$
1: 3D: MFDM - , $\mathrm{U}_{\text {max }}=7.9311 \mathrm{~m}, \mathrm{~W}_{\text {max }}=34.9505 \mathrm{~m}, \mathrm{~V}_{\text {max }}=6.3277 \mathrm{~m}$
2: 3D: MFDM - , $\mathrm{U}_{\max }=7.9311 \mathrm{~m}, \mathrm{~W}_{\text {max }}=34.9889 \mathrm{~m}, \mathrm{~V}_{\text {max }}=6.3334 \mathrm{~m}$
3: 3D: MFDM - , $\mathrm{U}_{\text {max }}=7.9311 \mathrm{~m}, \mathrm{~W}_{\text {max }}=34.971 \mathrm{~m}, \mathrm{~V}_{\text {max }}=6.3305 \mathrm{~m}$

- 1: 3D: MFDM -
$\square-2: 3 \mathrm{D}:$ MFDM -
\rightarrow 3: 3D: MFDM -

TEST DATA \#2 (EP)

Influence of supporting structure elasticity (MFDM)
21 nodes, computational time, 1: 2s, 2: 2s
DEFLECTION [m], nodes $=21$, elements $=20$
1: 3D: MFDM - , $\mathrm{U}_{\text {max }}=0.208 \mathrm{~m}, \mathrm{~W}_{\text {max }}=8.3959 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$
2: 3D: MFDM - , $\mathrm{U}_{\text {max }}=0.2551 \mathrm{~m}, \mathrm{~W}_{\text {max }}=8.9015 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$

$$
-1: 3 D: M F D M-
$$

$$
\square-2: 3 \mathrm{D}: \text { MFDM - }
$$

TEST DATA \#2 (EP)
Influence of chains of insulators (MFDM)
21 nodes, computational time, 1:2s, 2: 2s, 3: 2s
DEFLECTION [m], nodes $=21$, elements $=20$
1: 3D: MFDM - , $U_{\text {max }}=0.208 \mathrm{~m}, \mathrm{~W}_{\text {max }}=8.3959 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$
2: 3D: $\mathrm{MFDM}_{-,} \mathrm{U}_{\text {max }}=0.21894 \mathrm{~m}, \mathrm{~W}_{\text {max }}=7.4058 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$
3: 3D: MFDM - , $U_{\max }=0.22437 \mathrm{~m}, \mathrm{~W}_{\max }=7.5556 \mathrm{~m}, \mathrm{~V}_{\text {max }}=0 \mathrm{~m}$

$$
\begin{aligned}
& -1: 3 D: M F D M- \\
& -\quad-2: 3 D: M F D M- \\
& -3: 3 D: M F D M-
\end{aligned}
$$

5. HIBRID THEORETICAL - EXPERIMENTAL ANALYSIS OF

 OVERHEAD POWER TRANSMISSION LINES Constrained nonlinear optimization problem type B5.1 Types of on-line measured data, and ways of their use
data types
$=$ weather conditions, electric current induced data \Rightarrow loadings and conductors
$=$ angles of conductor inclination and rotation
chosen ways of use of measured angles
= comparison of measured and calculated data itself
= cable deflections analysis including measured data

- Approach I: including angle measurements into common simultaneous hybrid theoretical-experimental-numerical solution approach
- Approach II: use of measured cable inclination angles to appropriate modification of initial data and solution of cable deflections b.v.problem defined above

5.2 Measurement of cable inclination angles by EC Systems

Cable inclination measurement

Cable rotation measurement

On-line measured angles

5.3 HYBRID SOLUTION APPROACH I using the physically based approximation

 (PBA) for simultaneous analysis of theory and all experimental dataGeneral formulation
find the stationary point of the functional

$$
\phi(u, \lambda)=\lambda \phi^{T}(u)+(1-\lambda) \phi^{E}(u) \quad \lambda \in[0,1]
$$

satisfying equality and inequality constraints

$$
\begin{array}{|l|}
\hline A(u)=b \\
B(u)<e \\
\hline
\end{array}
$$

where ϕ^{T} and $\quad \phi^{E} \quad$ are dimensionless theoretical and experimental parts of the functional.
Formulation for conductors displacements $\boldsymbol{u}(X)$
Theoretical part - only variational form available

$$
\delta \varphi^{T}=\frac{1}{C}\left\{\int_{0}^{L} v^{\prime} \cdot \mathbf{F} d X-\int_{0}^{L} v \cdot \mathbf{p} d X+\sum_{k}^{2} v_{k}^{T} \cdot \mathbf{K}_{k}^{(s)}\left(u_{k}-\widehat{u}_{k}\right)\right\}
$$

C - parameter for unitless variational form

Experimental part - for measured inclination γ^{E} and rotation ω^{E} angles as well as displacements

$$
\phi^{E}=\frac{1}{J+2 K} \sum_{k=1}^{K}\left\{\left[\frac{\operatorname{tg} \gamma_{k}-\operatorname{tg} \gamma_{k}^{E}}{e_{\gamma_{k}}}\right]^{2}+\left[\frac{\operatorname{tg} \omega_{k}-\operatorname{tg} \omega_{k}^{E}}{e_{\omega_{k}}}\right]^{2}\right\}+\sum_{j=1}^{J}\left(\frac{\left\|P_{j}-P_{j}^{E}\right\|}{e_{P_{j}}}\right)^{2}, \quad\left\|P_{j}-P_{j}^{E}\right\|^{2}=\left(x_{j}-x_{j}^{E}\right)^{2}+\left(y_{j}-y_{j}^{E}\right)^{2}+\left(w_{j}-w_{j}^{E}\right)^{2}
$$

Two steps solution procedure
(i) solve

$$
\delta \varphi=\lambda \delta \varphi^{T}+(1-\lambda) \delta \varphi^{E}=0 \rightarrow \boldsymbol{u}(X, \lambda)
$$

(ii) find $\lambda_{\text {max }}$ for $\boldsymbol{u}(X, \lambda), \lambda \in[0,1]$

satisfying inequality constraints

local error

$$
\left|\frac{\operatorname{tg} \gamma_{k}-\operatorname{tg} \gamma_{k}^{E}}{e_{\gamma_{k}}}\right| \leq 1,\left|\frac{\operatorname{tg} \omega_{k}-\operatorname{tg} \omega_{k}^{E}}{e_{\omega_{k}}}\right| \leq 1 \quad, \quad \frac{\left\|P_{j}-P_{j}^{E}\right\|^{2}}{e_{P_{j}}^{2}} \leq 1, j=1,2, \ldots, J, \quad k=1,2, \ldots, K
$$

global error

$$
\sqrt{\Phi^{E}}<\frac{1}{m}, \quad m \geq 1, m \approx 2 \div 5
$$

where

$$
\begin{aligned}
& \operatorname{tg} \gamma_{i}^{T}=\frac{1}{\Delta} \int_{\Delta} \operatorname{tg} \gamma d X=\frac{1}{\Delta} \int_{\Delta} \frac{y^{\prime}}{\sqrt{\left(x^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}}} d X \\
& \qquad \begin{aligned}
& \operatorname{tg} \omega_{i}^{T}=\frac{1}{\Delta} \int_{\Delta} \operatorname{tg} \omega d X= \\
& \sqrt{(\Delta x)^{2}+(\Delta z)^{2}}
\end{aligned} \quad \approx h(\Delta x, \Delta y, \Delta z)
\end{aligned}
$$

may be expressed in terms of unknown \boldsymbol{u} quantities
$e_{\gamma_{k}}, e_{\omega_{k}}, e_{P_{j}}$ admissible measurement tolerances

OPTIMIZATION PROCEDURE FOR VARIABLE CABLE LENGTH L AND TEMPERATURE T

1. solve above FBA problem assuming fixed values $T=T^{E} \quad$ and $\quad L=L^{E}$
2. fix $T=T^{E} \quad$ vary L, find $L=L_{\text {opt }}$
minimising cable curvature and satisfying the constraint

$$
\min _{L} \kappa^{2}, \quad \kappa^{2} \approx \frac{1}{L} \int_{0}^{L}\left(\frac{d^{2} w}{d X^{2}}\right)^{2} d X \quad \Delta L=\left|L-L^{E}\right| \leq e_{L}=\Delta L_{\max }
$$

3. fix $L=L_{o p t}$ vary T, find $T=T_{o p t}$
minimising the same cable curvature κ^{2} while satisfying constraints $\quad \Delta T=\left|T-T^{E}\right| \leq e_{T}=\Delta T_{\max }$

5.4 Accounting for measurement data - approach II

$$
\begin{aligned}
& \text { Whenever }\left|\omega^{E}-\frac{1}{\Delta} \int_{\Delta} \omega\left(T^{E}, \hat{L}, \hat{q}, \hat{p}\right) \mathrm{d} X\right|>e_{\omega} \\
& {\left[T^{E}, \hat{L}, \hat{q}, \hat{p}\right]=\hat{\boldsymbol{Z}} \rightarrow \tilde{\boldsymbol{Z}}=[\tilde{T}, \tilde{L}, \tilde{q}, \tilde{p}]} \\
& J(\boldsymbol{Z})=\alpha_{\omega}\left[\int_{\Delta} \omega(\boldsymbol{Z}) \mathrm{d} X-\omega^{E} \Delta\right]^{2}+\alpha_{T}\left(T-T^{E}\right)^{2} \\
& \alpha_{\omega}, \alpha_{T}-\text { appropriate weights } \\
& J(\tilde{\boldsymbol{Z}})=\min _{\boldsymbol{Z}} J(\boldsymbol{Z}) \quad \text { subject to } \quad\left|\tilde{Z}_{i}-\hat{Z}_{i}\right| \leqslant e_{z} \\
& \boldsymbol{u}=\boldsymbol{u}(\tilde{T}, \tilde{L}, \tilde{q}, \tilde{p})
\end{aligned}
$$

Other measured quantities, like angle γ or wind q may be also considered in $J(\boldsymbol{Z})$.

TEST DATA \#2 (EP) - Approach I

 Influence of measurement data (MFDM)21 nodes, computational time, 1: 1s, 2: 1s, 3: 18s
measurement:

TEST DATA \#2 (EP) - Approach I

 Influence of measurement data (MFDM)21 nodes, computational time, 1: 1s, 2: 17s, 3: 17s

$$
\gamma=-5^{\circ} \pm 2^{\circ} \quad \gamma=-5^{\circ} \pm 2^{\circ}
$$

$$
\gamma=5^{\circ} \pm 2^{\circ}
$$

bad measurement

TEST DATA \#2 (EP) - Approach I against Approach II

 Influence of measurement data (MFDM - approach I, FEM - approach II) 21 nodes, computational time, 1: 1s, 2: 18s, 3 : 1 s

TEST DATA \#2 (EP) - Approach I against Approach II

 Influence of measurement data (MFDM - approach I, FEM - approach II) 21 nodes, computational time, 1: 1s, 2: 18s, 3 : 1 s

2 angular measurements:

gamma $=0.5 \mathrm{w}_{\text {theor }}^{\prime}, \mathrm{x}=0.2 \mathrm{~L}, \mathrm{e}=1^{\circ}$

$$
\text { gamma }=0.5 \mathrm{w}_{\text {theor }}^{\prime}, \mathrm{x}=0.8 \mathrm{~L}, \mathrm{e}=1^{\circ}
$$

2 angular measurements:

gamma $=0.5 \mathrm{w}_{\text {theor }}^{\prime}, \mathrm{x}=0.2 \mathrm{~L}, \mathrm{e}=1^{\circ}$

2 angular measurements:

gamma $=0.5 \mathrm{w}_{\text {theor }}^{\prime}, \mathrm{x}=0.2 \mathrm{~L}, \mathrm{e}=1^{\circ}$

$$
\text { gamma }=0.5 \mathrm{w}_{\text {theor }}^{\prime}, \mathrm{x}=0.8 \mathrm{~L}, \mathrm{e}=1^{\circ}
$$

PILOT ANALYSIS FOR TAURON POWER TRANSMISSION LINE

$$
\begin{aligned}
& -1: 3 D: F E M, n=61, c p u=2 s \\
& \rightarrow-2: 3 D: F E M, n=61, c p u=39 s
\end{aligned}
$$

optimal - no initial length change

$\rightarrow-1$: 3D: FEM, $n=61$, cpu=2s
$-2: 3 D: F E M, n=61, c p u=39 s$

SCHEMATICAL 2D SIDE VIEW:

pure theoretical
optimal - no initial length change

-1 1: 3D: FEM, $\mathrm{n}=61$, cpu=2s $\rightarrow-2$: $3 \mathrm{D}:$ FEM, $\mathrm{n}=61$, $\mathrm{cpu}=278 \mathrm{~s}$
optimal - with initial length change ($\mathrm{dL}=5 \mathrm{~cm}$)

SCHEMATICAL 2D SIDE VIEW:

pure theoretical
optimal -
with initial length change (dL = 5cm)

PILOT STEERING CODE

6. Final remarks

6.1 Brief summary

- Developed and preliminary tested were reliable mechanical and mathematical models as well as relevant study computer codes providing very fast and precise 3D analysis of large cable displacements, as well as 3 spans sections of overhead power transmission lines.
- Due to real engineering problem considered special attention was paid to reliability of the results obtained. Therefore, several independent approaches were investigated including
= series of 1D, 2D, and 3D models
= strong, weak and hybrid mixed formulations
= several methods of discrete analysis (FEM, MFDM, MFDM + MLPG)
= various orders of approximation
= three different computer codes (two ours)
= various methods of non-linear analysis
- For these approaches examined and compared were
= precision of results obtained (a-posteriori error analysis), their
= convergence, and convergence rate
= stability
= efficiency (computational time)
- Results of innovative on-line measurements (weather data and cable inclination and rotation angles) were incorporated into analysis of large displacements of cables. Two different solution approaches are proposed
= simultaneous hybrid analysis using the theory of mechanics and all on-line measurements was considered within the Physically Based Approximation (PBA) solution approach. However, such PBA application required its modification, namely extension of the original method onto its new variational formulation.
= search for the optimal set of measured data minimizing descripancy between calculated and measured quantities. New b.v.p. solution for such data is found then.
- The original elements of this research include:
= innovative problem formulation
= exact analytical 3D solution of cable b.v. problem
= first MFDM application to overhead power lines
= comparison of various solution approaches
- The solution approach developed here is carried out for the benefit of real engineering problem of dynamic management of overhead power lines.
- The existing policy of dichotomous summer and winter safety thresholds, limiting power transmission may be replaced by dynamic management based on innovative on-line measurements, and analysis provided by our research reported here. Such policy would allow for more efficient use of existing overhead power transmission lines.

6.2 Future investigations

- All tests, performed so far, used simulated experimental data; application of the true measured data is planned now.
- However, a calibration of the models of overhead power lines developed here is required first; it is based on the true conductors configuration data occasionally obtained by means of surveying.
- After calibration, the final verification and validation of the models developed in this research may be done; finally one may use them in real engineering analysis of the type I, II or III earlier defined.

THANK YOU VERY MUCH FOR ATTENTION

$0-1: 3 \mathrm{D}$: FEM, $n=121, \mathrm{cpu}=5 \mathrm{~s}$
$\rightarrow 2: 3 D:$ FEM, $n=121, c p u=96 s$
no length change

$\rightarrow-1: 3 D:$ MFDM, $n=121$, cpu $=18 \mathrm{~s}$
$\rightarrow-2: 3 D: M F D M, n=121$, cpu $=356 \mathrm{~s}$
no length change

$\rightarrow 1: 3 \mathrm{D}:$ MFDM, $\mathrm{n}=121, \mathrm{cpu}=18 \mathrm{~s}$
$\rightarrow-2: 3 D: M F D M, n=121, c p u=2480 s$
with length change

EKSPERYMENTALNIE WSPOMAGANE OSZACOWANIE

 BEZPIECZNEJ SKRAJNI LINII ENERGETYCZNYCH WYSOKICH NAPIĘĆ
1. WSTĘP

1.1 Problematyka badań

Dziś będzie mowa o przesyłaniu energii elektrycznej.
Wszyscy potrzebujemy tej energii. Czy są zagrożenia w jej przesyłaniu?
kłopoty realia
propozycja
efekty
konsorcjum
sponsor
limity przesyłu - stopnie zasilania
przestarzała (40 lat) infrastruktura linii
elektroenergetycznych
dopuszczalne jedynie 2 progi:
lato (upał) i zima (lód)
System Dynamicznego Zarządzania Przesyłem
przy wykorzystaniu innowacyjnych pomiarów on-line;
rola operatora
zysk: SDZP < 15\% grafen (alternatywa) 100\% $\div 200 \%$
Uczelnie 5, PAN, Firmy 2, Operatorzy sieci 3 GEKON (Generator Koncepcji Ekologicznych)
Program: 1) Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej
2) Narodowe Centrum Badań i Rozwoju

Data characteristics

1. Technical data

- supporting structures
- chains of insulators
- conductors
- in-situ characteristics (e.g. shape of various obstacles)

2. Measured data

- measurement location
- data collector and sensor (BS) - on supporting structure
- sensor (R) - on conductors
- weather and electric current data
- conductor inclination and location data
- calibration and validation data (initial line status)
on-line measurement frequency - 10 min

3. Weather forecast 6-72 h (Institute of Computational Mathematics) and electric current data (network operators)
3.10 Stiffness matrices and loading vectors for both the FEM and MFD methods
N - shape functions
$\left(\boldsymbol{P}^{(e)}\right)^{(k)}=\int_{0}^{h}\left[\begin{array}{l}\boldsymbol{B}_{v_{1}}^{(e)} \\ \boldsymbol{B}_{v_{2}}^{(e)} \\ \boldsymbol{B}_{v_{3}}^{(e)}\end{array}\right]\left[\begin{array}{l}\left(F_{1}^{(e)}\right)^{(k)} \\ \left(F_{2}^{(e)}\right)^{(k)} \\ \left(F_{3}^{(e)}\right)^{(k)}\end{array}\right] d X-\int_{0}^{h}\left[\begin{array}{l}\boldsymbol{N}_{v_{1}}^{(e)} \\ \boldsymbol{N}_{v_{2}}^{(e)} \\ \boldsymbol{N}_{v_{3}}^{(e)}\end{array}\right]\left[\begin{array}{l}\left(p_{1}^{(e)}\right)^{(k)} \\ \left(p_{2}^{(e)}\right)^{(k)} \\ \left(p_{3}^{(e)}\right)^{(k)}\end{array}\right] d X$ (MES, BMRS)
B - derivatives of shape functions

$$
\boldsymbol{B}^{(e)}=\frac{d}{d X} \boldsymbol{N}^{(e)}
$$

