
Distributed Cloud Environment for PL-Grid

Applications

Piotr Nowakowski, Tomasz Bartyński, Tomasz Gubała, Daniel
Harężlak, Marek Kasztelnik, J. Meizner, P. Suder, M. Bubak

ACC CYFRONET AGH

KUKDM 2015

Zakopane, 12 March 2015

A (very) brief introduction

Scientist

I need to
compute

something.

The challenge Where we are

Developer

Office PC

Scientist

MySpine (client application)
Requires: MS Windows

There’s a better way!

MySpine (cloud service)
Requires: MS Windows

Computational cloud

Developer

Scientist

Computations are an inherent
part of modern e-science,
particularly within the life
sciences domain. As the
available IT tools grow ever
more sophisticated, domain
scientists require help from
scientific programmers and
other IT specialists to be able to
perform their research.

When faced with a computational task,
the first reaction is to either install the
necessary software by oneself or call in
help from the IT department. Either
way, such traditional setups carry
serious drawbacks:

• You need to provision your own
hardware (typically an office PC)

• Your application is only accessible
from one place (typically your office)

• Applications and data cannot be
easily deployed on other computers

Computational clouds enable us to avoid
these problems entirely. A cloud-based
service can perform all the functions of a
locally running application, with the
following benefits:

• The hardware is provided by the cloud
operator (and can be vastly more
powerful than any local resources!)

• A cloud application is available from
anywhere

• Once deployed, the application can be
accessed by many users

• Install/configure each application service (which we call a Cloud Service or an
Atomic Service) once – then use them multiple times in different workflows;

• Direct access to raw virtual machines is provided for developers, with multitudes of
operating systems to choose from (IaaS solution);

• Install whatever you want (root access to cloud Virtual Machines);

• The cloud platform takes over management and instantiation of Cloud Services;

• Many instances of Cloud Services can be spawned simultaneously

Basic functionality of the cloud platform

Developer Application

Install any scientific
application in the cloud

End user
Access available

applications and data
in a secure manner

Administrator

Cloud infrastructure
for e-scienceManage cloud

computing and storage
resources

Managed application

Cloud service instance: A running
instance of a cloud service, hosted in the
cloud and capable of being directly
interfaced.!

Virtual Machine: A self-contained
operating system image, registered in
the Cloud framework and capable of
being managed by PL-Grid mechanisms.!
Cloud service: A PL-Grid application
(or a component thereof) installed on
a Virtual Machine and registered with
the cloud management tools for
deployment.

!

Raw OS

OS

PL-Grid app.
(or component)

External APIs

OS

PL-Grid app.
(or component)

External APIs

Cloud host

A (very) short glossary

5

PL-Grid Computational Cloud: developers’ view

MySpine v22 (cloud service)

ViroLab DRS (cloud service)

GIMIAS (cloud service)

Ubuntu Linux (OS template)

MS Windows (OS template)

PL-Grid
Computational

Cloud

Service instance

Ubuntu Linux (OS template)
Hardware: 4 cores, 8 GB
RAM, 30 GB HDD

1. The developer, selects and instantiates a service. This can be an existing
application (e.g. MySpine) or a „raw” OS image (e.g. MS Windows Server)

Service instance

OpenLab v1 (development)
Hardware: 4 cores, 8 GB
RAM, 30 GB HDD

2. The PL-Grid cloud platform creates a virtual machine
which hosts an instance of the selected template and
provides the required quantity of hardware resources.

2’. The developer may securely log into the machine and
install any software of his/her choosing – in this case,
we’re installing the OpenLabyrinth virtual patient
management application.

OpenLab v1 (cloud service)

3. Once the developer is
satisfied with the
application, he/she
may instruct the PL-
Grid cloud platform to
package and upload it
as a new service to the
cloud.

OpenLab v1 (cloud service)

4. The new service is automatically registered
in the PL-Grid cloud and can be shared with
users (including other developers, who may
continue development of the application).

Developer

6

PL-Grid Computational Cloud: end users’ view

MySpine v22 (cloud service)

ViroLab DRS (cloud service)

GIMIAS (cloud service)

PL-Grid
Computational Cloud

1. The scientist requests access to a PL-Grid group. Only published services (not OS
templates) are visible to non-developers.

Service instance

OpenLab v1 (cloud service)
Hardware: as required by
the application

2. The PL-Grid group leader approves the membership
request, following which the scientist may spawn
instances of the service in the cloud infrastructure

2’. The cloud platform creates an instance of the service with
the appropriate hardware allocation (as set by the
developer) and provides the user with access information.

OpenLab v1 (cloud service)

3. The user is free to interact with the
service. Once the instance is no
longer needed, it can be shut
down in order to conserve
computational resources.

Scientist

OpenLab v1 (cloud service)
Authorized users:

Group
manager

Cloud platform interfaces

All operations on cloud hardware are abstracted by the Atmosphere platform which exposes a RESTful API. For end users, a set
of GUIs provides a user-friendly work environment. The API can also be directly invoked by external services (Atmosphere relies
on the well-known OpenID authentication standard with PL-Grid acting as its identity provider).

Application

-- or --

Workflow
environment

End user

A full range of user-friendly GUIs is provided to enable service creation,
instantiation and access. A comprehensive online user guide is also available.

Atmosphere Registry (AIR)

Atmosphere

Ruby on Rails controller layer
(core Atmosphere logic)

Cloud
sites

The GUIs work by invoking a secure RESTful
API which is exposed by the Atmosphere
host. We refer to this API as the Cloud
Facade.

Any operation which can be performed using
the GUI may also be invoked programmatically
by tools acting on behalf of the platform user –
this includes standalone applications and
workflow management environments.

Advanced features: smart utilization of

hardware resources

• Published services become visible to non-developers
and can be instantiated using Atmosphere.

• Developers are free to spawn „snapshot” images of their
cloud services (e.g. for backup purposes) without
exposing them to external users.

ScientistDeveloper

Atmosphere Cloud Platform

Cloud
Service

Published

Atmosphere

Cloud
Service

Shared
Cloud
WN

Shared VM Scientist

Scientist

Scientist

Scientist

Atmosphere

Cloud
Service

Scalable

WN

Separate VM

Scientist

• A Shared service is backended by a
single virtual machine which „mimics”
multiple instances from the users’ PoV.

• Shared services greatly conserve
hardware resources and can be
instantiated quickly.

• When a Scalable service is overloaded with
requests Atmosphere can spawn additional
instances in the cloud to handle the additional
load.

• The process is transparent from the user’s
perspective.

WN

Separate VM

Some sample applications

Not just a proof-of-concept deployment: a
real production infrastructure with real-
world applications and services.
Over 150 service templates currently
registered, with approximately 50
instances launched on a daily basis across
three computational cloud sites.

A ticketing system is in place and technical support is
available on a regular basis both to service developers
and end users.
Online manuals and API documentation is available.

10

Summary: challenges and solutions

• The Atmosphere framework provides a way to port scientific
applications to the cloud

• A layer of abstraction is created over cloud-based virtual
machines, enabling the platform to automatically select the best
hardware resources upon which to deploy application services

• Automatic load balancing allows applications to scale up as
needed

• PL-Grid Core also provides access to cloud hardware upon which
scientific applications can be deployed

• A range of applications – from Linux-based SOAP/REST services all
the way to rich graphical clients running under MS Windows have
been successfully ported, proving the usefulness and versatility of
our solution

• The platform is fully integrated with the wider PL-Grid ecosystem,
including its authentication/authorization, sharing and data
management mechanisms

For further information…

• A more detailed introduction to the Atmosphere cloud platform
(including user manuals) can be found at
https://docs.cyfronet.pl/x/24D0

• The PL-Grid team responsible for development and maintenance
of the cloud platform is plgg-cloud

• You’re also welcome to visit the DIstributed Computing
Environments (DICE) team homepage at http://dice.cyfronet.pl
and our brand new GitHub site at http://dice-cyfronet.github.io

