

UNIWERSYTET O P O L S K I

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY

Oktakarboksyftalocyjaniny z eksperymentalnego i teoretycznego punktu widzenia

mgr Marta Kliber

dr hab. Małgorzata Broda, prof. UO

dr Joanna Nackiewicz

Zakład Chemii Fizycznej i Modelowania Molekularnego,

Wydział Chemii

Wprowadzenie

Ftalocyjaniny (tetraazabenzoporfiryny) to grupa związków chemicznych będących

pochodnymi porfiryny. Nie występują w przyrodzie, uzyskuje się je na drodze syntezy chemicznej.

Właściwości fizykochemiczne ftalocyjanin

- barwne
- trwałe w różnych środowiskach
- odporne termicznie
- większość ftalocyjanin jest odporna na działanie światła
- asocjują stosowo
- niska rozpuszczalność niepodstawionych ftalocyjanin w większości rozpuszczalników
- aktywne fotochemicznie

Widmo UV-Vis ftalocyjaniny bez metalu i metaloftalocyjaniny.

3

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY

4

fotouczulacze w optyce barwniki nieliniowej **Obecne i potencjalne** zastosowanie ftalocyjanin półprzewodniki katalizatory fotokatalizatory czujniki elektrokatalizatory chemiczne

www.uni.opole.pl

Terapia fotodynamiczna

Terapia fotodynamiczna (ang. photodynamic therapy – PDT) jest formą fotochemioterapii, która polega na aktywacji światłem leków – fotouczulaczy. Wzbudzony fotouczulacz, w obecności tlenu, generuje reaktywne formy tlenu (ROS - ang. reactive oxygen species), które prowadzą do śmierci chorobowo zmienionych komórek i tkanek.

Zainicjowanie reakcji fotodynamicznej wymaga trzech podstawowych składników:

- fotosensybilizatora uczulającego tkankę nowotworową na działanie światła
- źródła światła zdolnego do wzbudzenia zakumulowanego w tkance nowotworowej fotouczulacza
- tlenu rozpuszczonego w tkance

Przebieg terapii fotodynamicznej przy użyciu dożylnego fotouczulacza.

S. Yano et al. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12, 46–67

Fotosensybilizatory stosowane w terapii PDT

M. Trytek, M. Makarska, K. Polska, Biotechnologia 2005, 4, 109-127

Jiang Z, Shao J, Yang T, Wang J, Jia L, J. Pharm. Biomed. Anal. 2014, 87, 98-104

7

Badanie fotostabilności Al(OH)PcOC i ZnPcOC

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY * * * * * * *

promieniowanie UV: 170 μ W/cm², światło dzienne: 6 μ W/cm², C_{ftalocyjaniny} = 5·10⁻⁶ mol/dm³

KAPITAŁ LUDZKI

8

Kinetyczne krzywe fotolizy ZnPcOC pod wpływem promieniowania UV

www.uni.opole.pl

Kinetyczne stałe szybkości fotodegradacji ZnPcOC (pH=7.0) z aminokwasami pod wpływem działania promieniowania UV

		$k \cdot 10^{3} [\min^{-1}]$		
ZnPcOC + His	ZnPcOC + Gly	ZnPcOC + Ser	ZnPcOC + Cys	ZnPcOC
7.41	10.91	10.79	11.62	21.9
				9

Struktura kompleksu ZIPCOC z cyslemą obiczona metodą B3LYP/6-31G(d)

Energie oddziaływania i wybrane parametry geometryczne dla kompleksu aksjalnego ZnPcOC z aminokwasami

Kompleks	E _{oddział} . [kcal/mol]	Odległość Zn…O (N)	C-N <mark>między</mark> układami izoindolowymi	C-N w układach izoindolowych
ZnPcOC	-		1.329	1.373
ZnPcOC + Gly	24.8	2.085	1.330	1.368
ZnPcOC + Cys	25.5	2.079	1.330	1.368
ZnPcOC + Ser	26.8	2.073	1.330	1.367
ZnPcOC + His	31.6 30.8 (N)	2.053 2.119 (N)	1.330 1.330(N)	1.367 1.369(N)

Struktura kompleksu ZnPcOC z histydyną obliczona metodą B3LYP/6-31G(d)

Energie oddziaływania i wybrane parametry geometryczne dla kompleksów ekwatorialnych

Kompleks	E _{oddzial.} [kcal/mol]	Odległość OH…X [Å]	Długość OH [Å]	Odległość O…X [Å]	Odległość O…H(X) [Å]
Stabilizowane przez dwa wiązania O-H…O					X=O
ZnPcOC + Cys	18.8	1.682	1.005	2.687	1.682
ZnPcOC + Gly	18.6	1.671	1.006	2.677	1.694
ZnPcOC + Ser	19.3	1.680	1.005	2.685	1.674
ZnPcOC + His	18.8	1.660	1.008	2.668	1.703
Stabilizowane przez wiązania: O-H…N i Cα-H…O/O-H…N					
ZnPcOC + Cys	13.3	1.727	1.017	2.742	2.307
ZnPcOC + Gly	14.2	1.705	1.021	2.726	2.360
ZnPcOC + Ser	15.5	1.692	1.025	2.718	2.408
ZnPcOC + His	18.2	1.640	1.039	2.678	2.427
(ZnPcOC+His)*	22.0	1.751	1.010	2.712	1.814ª
^a odległość OH…N, gdzieN jest atomem azotu w łańcuchu bocznym histydyny.					40

ZnPcOC z aminokwasami

www.uni.opole.pl

A EUROPEJSKA EUROPEJSKI VUSZ SPOŁECZNY

Energie oddziaływania i wybrane parametry geometryczne dla kompleksu aksjalnego Al(OH)PcOC z aminokwasami

Kompleks	E _{oddział.} [kcal/mol]	Odległość Al…O (z OH)	Odległość Al…O	C-N w układach izoindolowych
Al(OH)PcOC		1.736		1.380
Al(OH)PcOC + Gly	15.2	1.770	2.175	1.371
Al(OH)PcOC + Cys	16.3	1.771	2.151	1.371
Al(OH)PcOC + Ser	18.6	1.774	2.122	1.370
Al(OH)PcOC + His	23.5	1.778	2.083	1.369

Widma absorpcyjne UV-Vis ZnPcOC eksperymentalne i obliczone

Widmo absorpcyjne UV-Vis obliczone metodą LC-ωPBE/6-31G(d)

Widmo absorpcyjne UV-Vis eksperymentalne w pH=8.0

Widma absorpcyjne UV-Vis ZnPcOC eksperymentalne i obliczone

Porównanie długości fali głównego pasma Q dla widma eksperymentalnego i teoretycznego ZnPcOC

Funkcjonały	Baza	Widma UV-Vis	Widma UV-Vis	Widmo UV-Vis
	пипксујпа	w prozin	w wouzie	ekspei ymentame
B98		612 nm	629 nm	
CAM-B3LYP		622 nm	643 nm	
LC- wPBE		680 nm	709 nm	
M05	6-31G(d)	630 nm	650 nm	688 nm
PBE0		607 nm	624 nm	
PBE		657 nm	699 nm	
X3LYP		614 nm	631 nm	

 $LC-\omega PBE > PBE > M05 > CAM-B3LYP > X3LYP > B98 > PBE0$

Widma absorpcyjne UV-Vis Al(OH)PcOC eksperymentalne i obliczone

Widmo absorpcyjne UV-Vis obliczone metodą M05/6-31G(d) w wodzie

Widmo absorpcyjne UV-Vis eksperymentalne w pH=8.0

Widma absorpcyjne UV-Vis Al(OH)PcOC eksperymentalne i obliczone

Porównanie długości fali głównego pasma Q dla widma eksperymentalnego i teoretycznego Al(OH)PcOC

Funkcjonały	Baza	Widma UV-Vis	Widma UV-Vis	Widmo UV-Vis
	funkcyjna	w próżni	w wodzie	eksperymentalne
B98		628 nm	649 nm	
CAM-B3LYP		642 nm	667 nm	
LC- @PBE		705 nm	740 nm	
M05	6-31G(d)	647 nm	671 nm	691 nm
PBE0		623 nm	644 nm	
PBE		673 nm	687 nm	
X3LYP		630 nm	651 nm	

 $LC-\omega PBE > PBE > M05 > CAM-B3LYP > X3LYP > B98 > PBE0$

Wnioski

- Oktakarboksyftalocyjanina glinu Al(OH)PcOC w porównaniu do oktakarboksyftalocyjaniny cynku jest znacznie bardziej trwała (fotostabilna), zarówno w warunkach naświetlania jak i w ciemności.
- Obecność aminokwasów powoduje zwiększenie trwałości (stabilizuje) ZnPcOC co wskazuje na oddziaływanie ZnPcOC z aminokwasami.
- Istnieją dwa typy kompleksów oktakarboksyftalocyjanin z aminokwasami: kompleksy aksjalne i kompleksy ekwatorialne.
- Energia odziaływania z aminokwasami w kompleksach ekwatorialnych ZnPcOC jest nieco mniejsza w porównaniu do kompleksów aksjalnych.
- Energia odziaływania z aminokwasami dla kompleksów aksjalnych Al(OH)PcOC jest nieco mniejsza niż dla analogu z cynkiem, ze względu na konkurencyjne działanie grupy –OH.

Literatura:

- 1) Kübler A.C. Med Laser Appl 2005, 20, 37-45.
- 2) Trytek M., Makarska M., Polska K. Biotechnologia 2005, 4, 109–127.
- 3) Jiang Z., Shao J., Yang T., Wang J., Jia L., J Pharm Biomed Anal 2014, 87, 98–104.
- 4) Graczyk A., Fotodynamiczna metoda rozpoznawania i leczenia nowotworów, Dom Wyd. "Bellona", Warszawa, 1999, 21-74.
- 5) Nackiewicz J., Wacławek W., Suchan A. Na pograniczu Chemii i Biologii, Tom IX, 2003, 95–102.
- 6) Leznoff C.C., Lever A.B. Phthalocyanines Properties and Applications a) Vol.1. 1989; 139-247 b) Vol.3. 1993; 5-64 Wiley-VCH: New York
- 7) Castano A.P., Demidova T. N., Hamblin M.R., Photodiagn Photodyn 2004, 1, 279–293.
- 8) Brown S.B., Brown E.A., Walker I. Lancet Oncology 2004, 5, 497–508.
- 9) Acar I., Bıyıklıoğlu Z., Durmuş M., Kantekin H. J Organomet Chem 2012, 708–709, 65–74.
- 10) Karaoğlan G.K., Gümrükçü G., Koca A., Gül A. Dyes Pigments, 2011, 88, 247-256.
- 11) Nowis D., Stokłosa T., Legat M., Issat T., Jakóbsiak M., Gołąb J. Photodiagn Photodyn 2005, 2, 283-298.
- 12) Podbielska H., Sieroń A., Stręk W., Diagnostyka i terapia fotodynamiczna, Urban and Partner, Wrocław, 2004, 1-32.
- 13) Marzorati M., Bigler P., Vermathen M. Biochim Biophys Acta 2011, 1808, 1661–1672.
- 14) Schaffer M., Schaffer P.M., Corti L., Gardiman M., Sotti G., Hofstetter A., Jori G., Duhmke E.J., Photochem Photobiol B 2002, 66, 157–164.
- 15) Allen C.M., Sharman W.M., Van Lier J.E. J Porphyrins Phthalocyanines 2001, 5, 161–169.
- 16) Maduray K., Karsten A., Odhav B., Nyokong T. J Photochem Photobiol B 2011, 103, 98-104.
- 17) Durmus M., Yaman H., Göl C., Ahsen V., Nyokong T. Dyes Pigments 2011, 9, 153-163.

Dziękuję za uwagę!

Marta Kliber jest stypendystką projektu "*Stypendia doktoranckie - inwestycja w kadrę naukową województwa opolskiego II"* współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.