

Measurement of the heavy-ion collision event characteristics with the ATLAS experiment at the LHC using computing resources of ACK Cyfronet

Klaudia Burka, Bartłomiej Rzeszotarski, Iwona Grabowska-Bołd, Tomasz Bołd

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

LHC accelerator - CERN

The Large Hadron Collider (LHC) is the world's largest and most powerful particle accelerator.

Some facts:

- 27km length, ~100 m underground near Geneva
- 40M collisions per second
- each proton travels 11,245 times the ring in one sec.
- v=0.99999c
- 11,850 amperes
- 8.4 tesla magnetic field (>100k times more powerful than the Earth's magnetic field)

- 1,232 dipole magnets (15m) and
 392 quadrupole magnets (5-7m)
- Superconductivity: main magnets operate at a temperature of 1.9 K (outer space; 2.7 K)
- Four particle detectors ATLAS, CMS, ALICE and LHCb.

ATLAS collaboration

3,000 physicists from over 175 institutions in 38 countries Distributed data analysis (democratic access to the data)

The Worldwide LHC Computing Grid (WLCG)

- reconstruction of the raw data from the detectors
- producing MC simulations of what the theory predicts should be seen in the detector
- physics analysis

http://www.isgtw.org/feature/how-grid-computing-helped-cern-hunt-higgs

"ATLAS at work"

Bunches of ~10¹¹ protons cross with frequency 40MHz \rightarrow 1 billion events per second

Trigger and Data Acquisition (TDAQ):

PB/s \rightarrow ~500MB/s using 3 steps reduction

	Incoming event rate per second	Outgoing event rate per second	Reduction factor
Level 1	40 000 000	100 000	400
Level 2	100 000	3 000	30
Level 3	3 000	200	15

WLCG (2012): Average running jobs >100,000 / day Cyfronet (2013): Average completed jobs >30,000 / week

Recorded	per event	per year
raw data	1.6 Mbytes	3 200 Tbytes
reconstructed data	1 Mbytes	2 000 Tbytes
physics data	0.1 Mbytes	200 Tbytes

Maximum: 84,606 , Minimum: 0.00 , Average: 30,951 , Current: 9,459

http://www.isgtw.org/feature/how-grid-computing-helped-cern-hunt-higgs

Amount of data produced by ATLAS

The Big Bang

- The state of early Universe can be predicted by heavy ion collisions (eg. Pb-Pb)
- At very high energies and temperatures a new state of matter can be observed -Quark Gluon Plasma (QGP)

Time evolution of HI collision

Lorentz contraction

Ultra central collision

Effects of the hydrodynamical evolution observed experimentally!

- Temperature : ~10¹²K
- Volume: ~3000 fm³
- Lifetime: 5-10 fm/c (~10⁻²⁵s)

 Deconfinement of QGP → quarks and gluons observed as free particles!

Sample lead - lead collision

- Each analysis requires writing complicated code (generally in C++ and using ROOT to make plots)
- Presented analysis requires processing ~ TB of data! → millions of collisions

Measurement techniques

Flow vector (average angle):

$$Q_n = |Q_n|e^{in\Psi_{RP}} = \frac{1}{N}\sum_j e^{in\phi_j}$$

- Anisotropies are global $\stackrel{\sim}{ o}$ average event angle can be measured in all detector. **Reconstructed charged particles** correlated with the average angle.
- The v₂ studied as a function of many variables: centrality, charged particle momenta etc.
- Many methods developed for this type of measurements.

 $v_n\{EP\} \sim \left\langle Q_n \frac{Q_{nA}^*}{|Q_{nA}|} \right\rangle \qquad v_n\{SP\} \sim \left\langle Q_n Q_{nA}^* \right\rangle$

Scalar Product:

Work in progress

All centrality intervals show:

- Rapid rise in v₂(p_T) up to p_T ~ 3 GeV
 - hydrodynamics
- Decrease out to 7-8 GeV
 - Weak p_T- dependence above 9-10 GeV
 - other phenomena -QGP opacity

The strongest elliptic flow is observed in centralities 30-50 $\% \rightarrow$ biggest asymmetry of the collision shape

- LHC is a unique research device
- Allows for big discoveries (like the Higgs boson)
- ATLAS experiment at LHC allows for various studies from the elementary particle properties to the nuclear research
- Big data volumes produced and managed using data grids
- In Heavy Ion collisions ATLAS reproduce conditions present in fractions of a second after Big Bang
- Surprising properties of the very hot and dense matter (QGP) are observed
- That matter behaves like nearly perfect fluid

Thank you for your attention

Backup slides

Average angle

