PERFORMANCE AND QUALITY

OF METHOD FOR SHORT TEXT
SIMILARITY ALGORITHM
BASED ON EDIT DISTANCE
AND THESAURUS

About the Levenshtein distance
U The Levenshtein distance between two strings is equal to the minimum number of insertions, deletions

and substitutions of chars required to change one string into the second one.

U The algorithm creates a matrix where its last element states as the solution.

Levenshtein distance algorithm is described by the formula:

El :Iild(i’j) =min(d(i—1j)+1,d(i,j—1)+Ld(i—-1j-1)+ p)

B=0:a(i)=b(j)
B=1:a(i) #b(]))
d(i,0) =i
d@,j)=]j
d(0,0)=0

P | L3 | R | — | 22

=
=~ | & | n

(X e

K U K DM 13
112 (3(4(5|6|7|8|9
0|1 (2(3(4|5|6|7 |38
110(1(2(3(4|5|6|7
211|101 |2(3[4]5]6
J|2(1(0(1|2]|3|4|5
4131210 (1[2]3|4
514 (3(2(1|0]1]2)|3
6|5 (4 (3 (210|112
165 (4(3(2(1]0]1
g|7|6 (5 (4(3]2]1]1

. Example of Levenshtein matrix

N«here:

I — symbol for the iteration, for i = (1, ..., N),

i=1

d — matrix sizes N+1, M+1, made from two terms,
N, M — length of two terms,

d(i,j) - (i,j) — element of matrix d,

min — function returns minimum of two variables,

B — variable that gets values: O or 1,

a(i) — i — element in string of term q,

b(j) — | — element in string of term b.

Levenshtein distance K is a minimum number of operations
(insertion, deletion, substitution) required to change one term
into the other.

K = d(N,M)

Details of a problem:

U terms coding based on Levenshtein
distance and thesaurus

O spelling mistakes in texts

U similarity measure based on edit
distance

Used technologies:
O Microsoft .NET (Framework 4.0)
0 Xamarin Mono (for OS Linux)

Examples of the use:

U texts (documents) analysis

U detecting plagiarism (in most cases -
resignation of variety of nouns and
verbs based on standard thesaurus)

1,00 v
O Similarity - using coding terms
0,80 method
oy
£ 0,60
o
g 0,40 MW Similarity - without using cocing
] terms methoc
0,20 I
0,00 B Levenshtein distance - without using
12 3 4 5 6 7 8 9 1011 1213 14 15 16 17 similarity measure and coding terms
Ordinal numbers of sentences methods

Fig. 2. Graphical results of quality test of English sentences. For all tests in this
case acceptable boundaries of similarity P were: q=0.80 for thesaurus and
q=0.75 for similarity between terms in sentences and gS =0.75 between

sentences
Num. of | Correct sentences Incorrect sentences with synonyms
sentence
s
51 Tom is writing a letter Dere is writin a letters
52 We are waliting for a taxi We are waitin for car
53 Is Mary having breakfast? Is Jane hasing brekfest?
s4 Tom is not writing a letter Jimm isn’t writin leter
sH He isn't looking at the stars He is not look at the start
s6 He drinks milk twice a day He is drinks water twice a day
s7 We go to work six times a week We goes to works seven times a week
s8 | always feel great in spring | alway feel great in summer
s9 Do you like apples? Does you likes pear?
510 | don't like milk | do not likes water
511 Tom was writing the letter all day | Jimmy writting the leter all day yestaredy
yesterday
Num. of | Correct sentences after terms coding {,Incorrec‘t sentences with synonyms
sentence after terms coding method
s
s1 #1 is writing a letter #1is writin a letters
s2 we are waiting for a #2 we are waitin for #2
s3 Is#1 having breakfast? I1s#1 hasing brekfest?
s4 #1#8 wnting a letter #1#9 writin leter
59 he #9 looking at the stars he #9 look at the start
s6 he drinks #12 twice a day he is drinks #12 twice a day
s7 we go to work #3 times a week we goes to works #3 times a week
s8 1 always feel great in #4 1 alway feel great in #4
s9 do you like #57? does you likes #5?
510 1#11 like #12 1#11 likes #12
511 #1 was writing the letter all day yesterday | #1 writting the leter all day yestaredy

The obtained results show that the method of coding terms increases the precision
of similarity estimation in some cases from 0-20% even up to 75-100%.

Performance and quality of method for short text similarity algorithm based on edit distance and thesaurus

