PERFORMANCE AND QUALITY

OF METHOD FOR SHORT TEXT
SIMILARITY ALGORITHM
BASED ON EDIT DISTANCE
AND THESAURUS




About the Levenshtein distance
U The Levenshtein distance between two strings is equal to the minimum number of insertions, deletions

and substitutions of chars required to change one string into the second one.

U The algorithm creates a matrix where its last element states as the solution.

Levenshtein distance algorithm is described by the formula:

El :Iild(i’j) =min(d(i—1j)+1,d(i,j—1)+Ld(i—-1j-1)+ p)

B=0:a(i)=b(j)
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. Example of Levenshtein matrix

N«here:

I — symbol for the iteration, for i = (1, ..., N),

i=1

d — matrix sizes N+1, M+1, made from two terms,
N, M — length of two terms,

d(i,j) - (i,j) — element of matrix d,

min — function returns minimum of two variables,

B — variable that gets values: O or 1,

a(i) — i — element in string of term q,

b(j) — | — element in string of term b.

Levenshtein distance K is a minimum number of operations
(insertion, deletion, substitution) required to change one term
into the other.

K = d(N,M)



Details of a problem:

U terms coding based on Levenshtein
distance and thesaurus

O spelling mistakes in texts

U similarity measure based on edit
distance

Used technologies:
O Microsoft .NET (Framework 4.0)
0 Xamarin Mono (for OS Linux)

Examples of the use:

U texts (documents) analysis

U detecting plagiarism (in most cases -
resignation of variety of nouns and
verbs based on standard thesaurus)
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Fig. 2. Graphical results of quality test of English sentences. For all tests in this
case acceptable boundaries of similarity P were: q=0.80 for thesaurus and
q=0.75 for similarity between terms in sentences and gS =0.75 between

sentences
Num. of | Correct sentences Incorrect sentences with synonyms
sentence
s
51 Tom is writing a letter Dere is writin a letters
52 We are waliting for a taxi We are waitin for car
53 Is Mary having breakfast? Is Jane hasing brekfest?
s4 Tom is not writing a letter Jimm isn’t writin leter
sH He isn't looking at the stars He is not look at the start
s6 He drinks milk twice a day He is drinks water twice a day
s7 We go to work six times a week We goes to works seven times a week
s8 | always feel great in spring | alway feel great in summer
s9 Do you like apples? Does you likes pear?
510 | don't like milk | do not likes water
511 Tom was writing the letter all day | Jimmy writting the leter all day yestaredy
yesterday
Num. of | Correct sentences after terms coding {,Incorrec‘t sentences with synonyms
sentence after terms coding method
s
s1 #1 is writing a letter #1is writin a letters
s2 we are waiting for a #2 we are waitin for #2
s3 Is#1 having breakfast? I1s#1 hasing brekfest?
s4 #1#8 wnting a letter #1#9 writin leter
59 he #9 looking at the stars he #9 look at the start
s6 he drinks #12 twice a day he is drinks #12 twice a day
s7 we go to work #3 times a week we goes to works #3 times a week
s8 1 always feel great in #4 1 alway feel great in #4
s9 do you like #57? does you likes #5?
510 1#11 like #12 1#11 likes #12
511 #1 was writing the letter all day yesterday | #1 writting the leter all day yestaredy

The obtained results show that the method of coding terms increases the precision
of similarity estimation in some cases from 0-20% even up to 75-100%.

Performance and quality of method for short text similarity algorithm based on edit distance and thesaurus



