Numerical approach and computer simulations of population evolution with migration between locations

Maria Magdoń-Maksymowicz

Department of Mathematical Statistics University of Agriculture in Krakow

Andrzej Maksymowicz

The School of Banking and Management in Krakow

<u>Plan:</u>

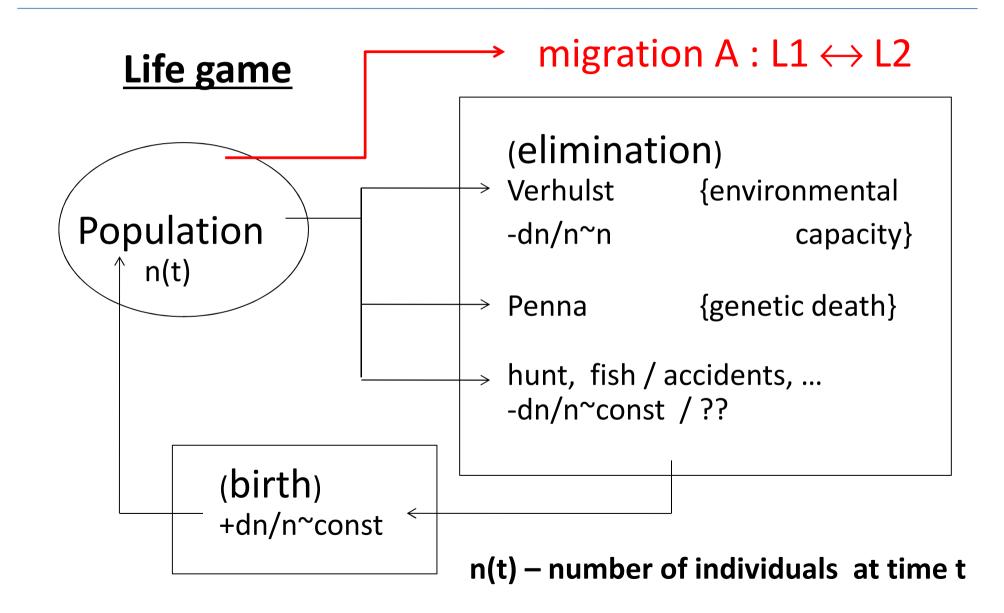
- Model
 - Specification of model parameters
- Results
 - Simulations and numerical calculations
- Conclusions

The model and model parameters

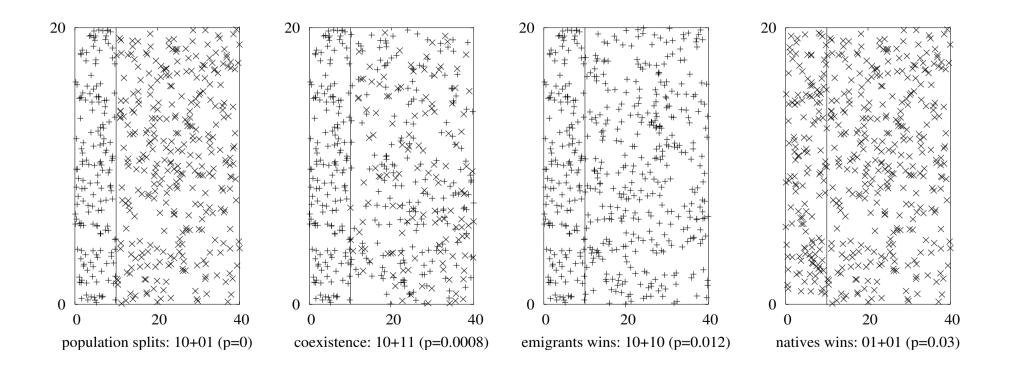
We consider two habitats (L_1, L_2) occupied by two species (A, B).			
Model parameters (b, m, T) & p are:			
birth rate		b	
bad mutations rate		m	admitted at birth
resistance to mutations		Т	
migration rate between locations		р	
We used			
in locations: L_1	m=0.01	L_2	m=0.04
for species: A	(b, T)=(0.25, 1	1)	
В	(b, T)=(0.20, 3	8)	
 On output, we get population x = n/N normalized to limited 			
enviromental capacity N.			

• The set of parameters were chosen, so that for p=0: A wins competition in L₁ and B is the winner in location L₂.

The model and model parameters – (2)


• We make species A migrants, with probability p of a transfer, and we concentrate on two basic schemes:

- 'one way ticket' migration from habitat 1 to 2
- 'return visa' migration from 1 to 2 or back from 2 to 1
- Limiting case p=0, within the simplest reference <u>logistic</u> model (with death toll due to the limited environmental capacity only) predicts population $x^*=n/N=b/(1+b)$.


• In simulations we apply <u>Penna</u> model that also accounts for genetic death if number of 'bad mutations' reaches threshold value T. Then population $x < x^*$ is expected in each of the isolated locations.

- As we mentioned, in each locations only one species takes over, here A wins in 1 while B wins in habitat 2.
- More exciting is the case with migration, p>0, between habitats.

Scheme of numerical calculations

Results for 'one way ticket' migration species A from habitat L_1 to L_2 from left scheme: p = 0, moderate p (p<p₁), high p, panic (p > p₂)

Maria Magdoń-Maksymowicz and Andrzej Maksymowicz ... population evolution with migration

Conclusions

- With no migration, one species takes over and wins.
- For 'one way ticket' migration scheme:
 - population of emigrants is a linear function of p, for 0 1</sub> = 0.001 – type A occupies location L₁ and we get a mixed population in L₂
 - we get saturation for $p_1 ,$ $type A wins in both habitant <math>L_1$ and L_2
 - catastrophic exodus-like reverse effect for p > p₂, with total extinction of species A, species B wins in both locations L₁ and L_{2.}

• For 'return visa' scheme: population of emigrants reaches some kind of a dynamic equilibrium in habitat L_2 while in L_1 species A wins.

THANK YOU FOR ATTENTION