Introduction	Media Protection Mechanisms	Proposed Solution	Summary

Media Protection Mechanisms in the SYNAT Digital Library

A. Dziech, A. Głowacz, J. Białas, and P. Korus

ACK Cyfronet AGH

March 1, 2013

Introduction	Media Protection Mechanisms	Proposed Solution	Summary

< ≣ >

-

æ

Outline

Introduction What is Synat

Media Protection Mechanisms

Proposed Solution

Summary

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
•0			
What is Synat			

SYNAT Project

The main goal of the SYNAT project is to create an advanced and open distributed data repository intended for development in digital libraries.

The project started in 2010, the consortium consists of:

- ▶ ICM, University of Warsaw,
- Warsaw University of Technology,
- Academic Computer Center CYFRONET AGH,
- National Library of Poland,
- Institute of Bioorganic Chemistry, PAS - PCSS,
- National Institute of Telecommunications,
- Institute of Computer Science, PAN
- MIM, University of Warsaw

- NASK
- Polish-Japanese Institute of Information Technology
- Wrocław University of Technology
- Łazarski University
- Jagiellonian University in Cracow
- Cardinal Stefan Wyszyński University in Warsaw
- Military University of Technology

< E > < E >

3

 WETI, Gdańsk University of Technology

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
•0			
What is Synat			

SYNAT Project

The main goal of the SYNAT project is to create an advanced and open distributed data repository intended for development in digital libraries.

The project started in 2010, the consortium consists of:

- ICM, University of Warsaw,
- Warsaw University of Technology,
- Academic Computer Center CYFRONET AGH,
- National Library of Poland,
- Institute of Bioorganic Chemistry, PAS - PCSS,
- National Institute of Telecommunications,
- Institute of Computer Science, PAN
- MIM, University of Warsaw

- NASK
- Polish-Japanese Institute of Information Technology
- Wrocław University of Technology
- Łazarski University
- Jagiellonian University in Cracow
- Cardinal Stefan Wyszyński University in Warsaw
- Military University of Technology

< ∃ >

- ∢ ⊒ ▶

э

 WETI, Gdańsk University of Technology

Introduction	Media Protection Mechanisms	Proposed Solution	Sumr
00			
What is Synat			

Controbutions of ACK Cyfronet

- Multimedia data indexing for purpose of content searching,
- Hardware acceleration of repository information processing,
- Creating distributed data repositories for multimedia.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary

< ∃→

э

Outline

Introduction

Media Protection Mechanisms

Requirements Definition of Digital Watermarking Applications of Digital Watermarking

Proposed Solution

Summary

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
	0000		
Requirements			

Requirements

- Scalability capable to store and maintain vast amount of data,
- Format independent supports any data exchange format (not only those most popular),
- Security provides access control, detects sources of illegal distribution.

0000

Proposed Solution

Summary

Definition of Digital Watermarking

Digital Watermarking

 A way of embedding information into a digital cover work in a permanent manner,

.⊒ →

Introduction

Applications of Digital Watermarking (continues)

- Content authentication:
 - Strict and robust authentication,
 - Tampering localization.
- Content reconstruction:
 - Restoration of original image content in case of tampering.
- Reversible privacy protection:
 - Blurring of selected regions of interest,
 - High-quality reconstruction for authorized users.
- Annotation watermarking:
 - Embedding meta-data or textual descriptions: e.g., subtitles, patient's medical history, doctor ID.

Applications of Digital Watermarking (continued)

- Copyright protection:
 - Embedding information about the author, owner, etc.
- Broadcast monitoring.
- Embedding low-quality soundtrack for audio-synchronization.
- Audio watermarking e.g., echo cancellation
- Hidden communication Steganography
 - File systems.
 - Executable files.
 - Web 2.0 applications e.g., the avatars carry the messages while the text is simple smalltalk
 - Network protocols

< ∃⇒

э

Outline

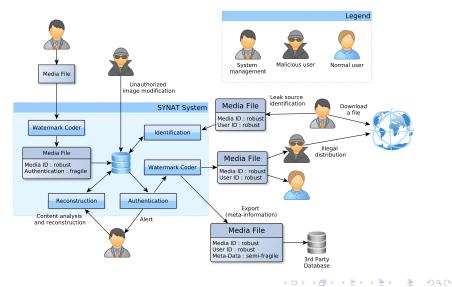
Introduction

Media Protection Mechanisms

Proposed Solution

Multi-watermarking scheme Robust resource identifier and digital fingerprint Authentication and Reconstruction Meta-data

Summary


Multi-watermarking scheme

The system uses many independent co-existing watermarks:

- Robust resource identifier identifies media files within repository,
- Digital fingerprint identifies individual copy of a digital file,
- Authentication/reconstruction detects unauthorized modifications/recovers original content,
- Meta-data embeds additional information.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
		0000000000	
Multi-watermarking scheme			

Use cases

Robust resource identifier and digital fingerprint

Introduction

Robust resource identifier

- Synchronization watermark:
 - Randomly generated pattern is embedded using Spread Spectrum technique in spatial domain,
 - SPOMF detector (Symmetric Phase-Only Matched Filter).
- Information watermark:
 - > The information consists of system signature and media identifier,
 - DSSS (Direct Sequence Spread-Spectrum) method is used for watermark generation,
 - Embedding in LH and HL subbands of 2nd level of DWT CDF 9/7 using Quantization Index Modulation.

Introduction

Media Protection Mechanisms

Proposed Solution

Summary

Robust resource identifier and digital fingerprint

Robust resource identifier Synchronization Example

Digital fingerprint (robust)

- User-specific identification signature Randomly generated from normal distribution,
- ▶ Embedded in HH subband of 2nd level of DWT CDF 9/7.
- Informed detector (higher accuracy, better performance),
- Capable of detect identity in case of colluding attack,
- Tree-based detection algorithm (slightly decreases the accuracy, but greatly increases the performance).

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
		00 000 000000	
Robust resource identifier and digital fingerprint			

- Cropping,
- Resizing,
- Lossy compression,
- ► Gamma correction,
- ► Collage attacks.

< 🗇 🕨

< 문 ► < 문 ►

Introduction	Media Protection Mechanisms	Proposed Solution	Summary	
		00000000000		
Robust resource identifier and digital fingerprint				

Cropping,

- Resizing,
- Lossy compression,
- ► Gamma correction,
- ► Collage attacks.

< ≣ >

Introduction	Media Protection Mechanisms	Proposed Solution	Summary	
00	0000	00000000000	000	
Robust resource identifier and digital fingerprint				

Cropping,

- Resizing,
- Lossy compression,
- ► Gamma correction,
- ► Collage attacks.

< ≣ >

Introduction	Media Protection Mechanisms	Proposed Solution	Summary	
		00 000 000000		
Robust resource identifier and digital fingerprint				

- Cropping,
- Resizing,
- Lossy compression,
- ► Gamma correction,
- ► Collage attacks.

< 🗇 🕨

★ E ► < E ►</p>

Introduction	Media Protection Mechanisms	Proposed Solution	Summary	
		00 000 000000		
Robust resource identifier and digital fingerprint				

- Cropping,
- Resizing,
- Lossy compression,
- ► Gamma correction,
- ► Collage attacks.

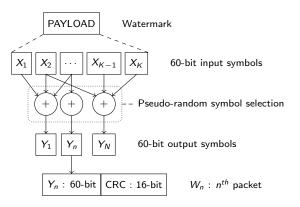
Introduction	Media Protection Mechanisms	Proposed Solution	Summary	
		00 00 000000		
Robust resource identifier and digital fingerprint				

- Cropping,
- Resizing,
- Lossy compression,
- Gamma correction,
- ► Collage attacks.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
		00000000000	
Authentication and Reconstruction			

Authentication/Reconstruction

- Signature is generated by using a block content and a secret key,
- Watermark is embedded in low-frequency coefficients of DCT,
- Reconstruction reference quality depends on tampering rate,
- Robust against lossy compression,
- Watermark is generated by using Fountain Codes.


Introduction	Media Protection Mechanisms	Proposed Solution	Summary
		000000 0000 0	
Authentication and Reconstruction			

Fountain Codes

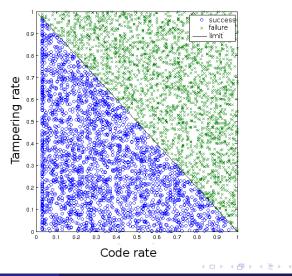
- Class of Rateless, erasure codes,
- In theory, a limitless stream of symbols can be generated from a given set of source symbols,
- Original set can be idealy recovered from any subset of symbols of size equal or slightly larger than a the number of encoding symbols.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
Authentication and Reconstruction			

Fountain Codes

< ≣⇒

э


Media Protection Mechanisms

Proposed Solution

Summary

Authentication and Reconstruction

Decoding success bounds

Media Protection Mechanisms

Proposed Solution

Summary

∃ ⊳

Authentication and Reconstruction

Authentication/Reconstruction Example

Introduction	Media Protection Mechanisms	Proposed Solution	Summary
		00000000000	
Meta-data			

Meta-data

- The idea is to embed additional meta-data related to an image directly in the image itself.
- Facilitates easier information sharing, as it suffices to share the watermarked images.
- > The additional information is stored in a secure manner.
- A dedicated agent might be implemented to keep the embedded information up to date with a database.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary

< ≣ >

э.

æ

Outline

Introduction

Media Protection Mechanisms

Proposed Solution

Summary Conclusions

Introduction	Media Protection Mechanisms	Proposed Solution	Summary ●○○
Conclusions			l ,

Conclusions

- Digital watermarking is a mechanism which can be used to protect digital multimedia,
- Co-existance of many separete watermarks allows for handling various misuse scenarios.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary ○●○
Conclusions			

Acknowledgements

Work financed by The National Centre for Research and Development (NCBiR) within SYNAT project no. SP/I/1/77065/10.

Introduction	Media Protection Mechanisms	Proposed Solution	Summary ○○●
Conclusions			

э

< ∃ →

Thank you for your attentionQuestions?