Molecular Modeling of Hydrogen Storage. M⁺ – H2 and M⁺ – Benzene vs. Metal Organic Frameworks (MOF)

P. Groch¹, M. Stachów¹, T. Kupka¹ oraz L. Stobiński²

¹Uniwersytet Opolski, Wydział Chemii, 45-052 Opole ²Instytut Chemii Fizycznej, PAN, 01-224 Warszawa

adres: pawel.groch@onet.pl

KU KDM 2013 Zakopane, 28.02 – 01.03.2013 r.

Plan prezentacji

- Wprowadzenie
- Metody
- o Wyniki
- o Wnioski
- Podziękowania

Emisja CO₂ w Unii Europejskiej

Elektrownie oraz ogrzewanie 42,4% 1956,76 mln ton/rok

Transport 19,2% 886,08 mln ton/rok

Źródło: Wyniki Komisji Europejskiej z roku 2009

Magazynowanie H₂: samochody dostawcze 2017 r.

Parametry przechowywania	Wartości
Zawartość wodoru	5,5% wag. H ₂
Objętościowe upakowanie	40 g H ₂ /l
Temperatura pracy	od -40 do 60ºC
Ciśnienie maksymalne	100 bar
Szybkość tankowania	1,5 kg H ₂ /min.
Ilość cykli	1500 cykli
Koszty	67 \$/kg H ₂

http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf

Magazynowanie H₂

Sprężony H₂ (najczęściej stosowany w pojazdach)

- Wysokie ciśnienie (500-700 atm) kosztowne zbiornikami
- Wysoki koszt sprężania (18% dla 200 atm)

Ciekły wodór (sporadycznie stosowany w pojazdach)

- Kosztowny system chłodzący
- Duży koszt skraplania

Wodorki metali (np. 4,5% wag. w NaAlH₄ z 2% TiCl₃)

• Słaba odwracalność i szybkość (wymagania: >100°C oraz >100 atm)

Nanorurki węglowe

• Bardzo małe wydajności

H₂ jako paliwo samochodowe

(MOF) Metal Organic Framework

Wyk. 1. Publikacje MOF w latach 1999-2011 (Scopus).

Rys. 1. Struktura MOF-5 $Zn_4O(C_8H_4O_4)_3$

MOF do magazynowania H₂

- Bardzo duże powierzchnie właściwe
- Adsorpcja fizyczna H₂
- Nierównomierna entalpia adsorpcji
- Brak objętości martwej
- Kontrola energii oddziaływania MOF-H₂
- Niewysycone centrów metalicznych.

Sorpcja fizyczna

- Oddziaływania Van der Waalsa pomiędzy matrycą, a H₂
- Entalpia wiązania MOF-H₂ wynosi 0,48-1,43 kcal/mol
- Proces szybki i odwracalny
- Entalpia adsorpcji kontrolowana dyfuzją
- Optymalna entalpia adsorpcji wynosi ok. 3,6 kcal/mol w temperaturze pokojowej.

H₂ w MOF-5, wolna objętość (żółta kula) o średnicy 15,2 Å. C: czarny, H: biały, O: czerwony, Zn: niebieski czworościan.

O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 7110-7118

Cel pracy

- Obliczenie parametrów strukturalnych oraz spektroskopowych, prostych modeli materiałów MOF.
- Wyznaczenie entalpii wiązania H₂ przez Li⁺, Na⁺, K⁺, Be²⁺, Ca²⁺, Mg²⁺, Cu²⁺, Cu⁺, Cu⁺, Cu²⁺, Zn²⁺, Al³⁺
- Określenie parametrów widm IR, Raman, NMR w układzie Mⁿ⁺-H₂
- Dobranie optymalnych baz funkcyjnych oraz metod do projektowania skutecznych materiałów do przechowywania wodoru.

Metody oraz narzędzia

- Gaussian 09, GaussView 05 oraz C-FOUR
- Metody obliczeniowe CCSD(T), CCSD i MP2
- Z zestawami baz funkcyjnych: Jensena pc-n, apc-n (n=2, 3, 4) Pople 6-31G(d), 6-311++G(d,p), 6-311++G(3df, 2pd) Dunninga aug-cc-pVTnZ (n=D, T, Q), cc-pVTnZ (n=D, T, Q, 5)
- Wyznaczenie energii oddziaływań M⁺⁻H₂, i korekta na błąd super pozycji bazy.

Wybrane kationy

1																	18
1H Wodór 1,01	2											13	14	15	16	17	2He Hel 4,00
3Li Lit 6,94	4Be Beryl 9,01											5 B Bor 10,81	6C Wegiel 12,01	7N Azot 14,01	80 Tlen 16,00	9F Fluor 19,00	10Ne Neon 20,18
11Na Sód 23,00	12 Mg Magnez 24,31	3	4	5	6	7	8	9	10	11	12	13Al Glin 26,98	14Si Krzem 28,08	15P Fosfor 30,97	16 S Siarka 32,07	17 Cl Chlor 35,45	18Ar Argon 39,95
19 K Potas 39,10	20Ca Wapń 40,08	21Sc Skand 44,96	22 Ti Tytan 47,88	23 Wanad 50,94	24Cr Chrom 52,00	25Mn Mangan 54,94	26Fe Želazo 55,85	27 Co Kobalt 58,93	28Ni Nikiel 58,69	29Cu Miedž 63,55	30Zn Cynk 65,39	31Ga Gal 69,72	32 Ge German 72,61	33As Arsen 74,92	34Se Selen 78,96	35 Br Brom 79,90	36Kr Krypton 83,80
37 Rb Rubid 85,47	38Sr Stront 87,62	39 Y Itr 88,91	40Zr Cyrkon 91,22	41Nb Niob 92,91	42Mo Molibden 95,94	43Tc Technet 97,91	44Ru Ruten 101,07	45Rh Rod 102,91	46Pd Pallad 106,42	47Ag Srebro 107,87	48Cd Kadm 112,41	49 In Ind 114,82	50 Sn Cyna 118,71	51Sb Antymon 121,76	52Te Tellur 127,60	53I Jod 126,90	54Xe Ksenon 131,29
55C8 Cez 132,91	56Ba Bar 137,33	57La [*] Lantan 138,91	72Hf Hafn 178,49	73Ta Tantal 180,95	74W Wolfram 183,84	75Re Ren 186,21	76 O 8 Osm 190,23	77 Ir Iryd 192,22	78Pt Platyna 195,08	79Au Zloto 196,97	80Hg Rtęć 200,59	81TI Tal 204,38	82Pb Ołów 207,20	83Bi Bizmut 208,98	84Po Polon 208,98	85At Astat 209,99	86Rn Radon 222,02
87Fr Frans 223,02	88Ra Rad 226,03	89Ac ^{**} Aktyn 227,03	104Rf Ruterford 261,11	105Db Dubn 263,11	106Sg Seaborg 265,12	107 Bh Bohr 264,10	108Hs Has 269,10	109Mt Meitner 268,10	110DS Dannstadt 281,10	111Uuu Ununun 280	112Uub Ununbi 285	113Uut Ununtri 284	114Uuq Unenkwad 289	115Uup Ununpent 288	116Uuh Ununhels 292	117Uus Ununsept	118Uuo Unmokt 294

M^{n+} - $H_2 w MOF$

Koszt obliczeń

Wnioski

- $\circ~$ Wyznaczono parametry strukturalne oraz częstości drgań harmonicznych w układzie $\rm M^{n+}\text{-}H_2$
- Określono entalpię oddziaływania układu Mⁿ⁺-H₂
- Entalpia wiązania Mⁿ⁺-H₂ powyżej wartości 3,6 kcal/mol wykazują kationy metali: Li⁺, Na⁺, Be²⁺, Ca²⁺, Mg²⁺, Cu²⁺, Cu⁺, Cu²⁺, Zn²⁺, Al³⁺.

Literatura

- 1. Strategies for Hydrogen Storage in Metal-Organic Frameworks, J. L. C. Rowsell, O. M. Yaghi, *Angew. Chem. Int. Ed.*, **2005**, *44*, 4670-4679
- 2. Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4 and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra, A. C. Sudik, N. W. Ockwig, A. R. Millward, A. P. Côté, O. M. Yaghi, *J. Am. Chem. Soc.*, **2005**, *127*, 7110-7118
- 3. Introduction to Metal-Organic Frameworks, O. M. Yaghi, H. Zhou, J. R. Long *Chem. Rev.*, **2012**, *127*, 7110-7118
- 4. Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks, M. Biswas, T. Cagin, *Computational and Theoretical Chemistry*, **2012**, 987, 42-56
- Cation-π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science, A. Subha Mahadevi and G. Narahari Sastry *Chem. Rev.* 2012, 10, 1021.

Podziękowania

• Praca wykonana w ramach grantu 8/WCH/2012-2013-S