

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Parallel approach for visual clustering of protein databases

Patryk Orzechowski¹, Krzysztof Boryczko²

¹ Institute of Automatics, Kraków, Poland, <u>patrick@agh.edu.pl</u>

² Institute of Computer Science, Kraków, Poland, <u>bory@agh.edu.pl</u>

Agenda

- 1. Introduction
- 2. Methodology
 - a. Proteins distance calculation
 - b. Clustering
 - c. Multidimensional Scaling
 - d. Quality assessment
- 3. Tools
- 4. Results
- 5. Conclusions

Introduction

- conventional classification bases on Hidden Markov Model (HMM) and Multiple Sequence Alignment (MSA)
- alternative aproach with clustering algorithms used
- no attempt taken so far to visually represent whole dataset basing on structural similarity of proteins

D.L. Nelson, M.M. Cox "Lehninger Principles of Biochemistry"

Approach

Methodology – proteins distances

J

G

Α

н

D

Е

K

J

F

Ι

Needleman-Wunsch algorithm

-	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Α	-1	-2	-3	3	2	1	0	-1	-2	-3	-4
В	-2	-3	-4	2	1	0	-1	-2	-3	-4	-5
J	-3	3	2	1	0	-1	-2	-3	3	2	1
D	-4	2	1	0	-1	5	4	3	2	1	0
Е	-5	1	0	-1	-2	4	10	9	8	7	6
J	-6	0	-1	-2	-3	3	9	8	14	13	12
К	-7	-1	-2	-3	-4	2	8	14	13	12	11
D	-8	-2	-3	-4	-5	1	7	13	12	11	10
J	-9	-3	-4	-5	-6	0	6	12	18	17	16
Е	-10	-4	-5	-6	-7	-1	5	11	17	16	15
J	-11	-5	-6	-7	-8	-2	4	10	16	15	14

 $M_{ij} = \max \{ M_{i-1, j-1} + s(a_i b_j); \\ \max_{x \ge 1} (M_{i-x, j} - g_x); \\ \max_{y \ge 1} (M_{i, j-y} - g_y) \}$

 M_{ij} – result of aligning first i characters in sequence a against first j in sequence b, $s(a_ib_j)$ – similarity between i-th character in sequence a and j-th in b, g_x – gap penalty for sequence a,

 g_v – gap penalty for sequence b.

- 1: __JGAHDE_K_J_FI
- +: ABJGAHDEJKDJEJFI
- **2:** ABJ DEJKDJEJ

Methodology – proteins distances

Similarity Matrices

Methodology – clustering

Shared Nearest Neighbors (SNN)

- based on Jarvis and Patrick algorithm
- uses point distance to k-nearest neighbors
- density-based clustering algorithm
- similarity measure:

- ✓ algorithm efficiently eliminates outliers and noise from datasets
- × number of resulting clusters is not known *a priori*
- × algorithm is very sensitive to any change in user defined parameters

Methodology – clustering

Shared Nearest Neighbors (SNN)

- 1. Compute the similarity matrix (containing nearest points)
- 2. Keep only the k most similar neighbors.

(*k* nearest neighbors of the similarity graph remain)

3. Construct the SNN-graph (Jarvis-Patrick algorithm).

Similarity threshold is applied, components are connected to obtain the clusters.

4. Find the SNN density of each point.

Using a user specified parameters, *Eps*, find the number of points that have an SNN similarity of *Eps* or greater to the point. This is the **SNN density** of the point.

5. Find the core points.

Using a user specified parameter, *MinPts*, find the core points, i.e. all points that have an SNN density greater than *MinPts*.

6. Form clusters from the core points.

If two core points are within a radius *Eps* of each other, then they are placed in the same cluster.

7. Discard all noise points.

All non-core points that are not within a radius of *Eps* of a core point are discarded.

8. Assign all non-noise, non-core points to clusters.

Assign points to the nearest core point.

Methodology – Multidimensional Scaling

- Multidimensional Scaling (MDS)
 - aim: reduction of dimensionality to smaller features set
 - method: creating a mapping reflecting distances between original and mapping set
 - algortithm: generating configuration of points in reduced space
 - calculating differences between distances in original space and generated
 - deflection from equilibrium determines formation of forces
 - minimizing non-linear stress function

Methodology – quality assessment

Munkres Algorithm

- founded by J. Munkres, H. Kuhn in 1957
- known also as Hungarian Algorithm
- solves in polinomial time the Assignment Problem (AP) of agents to tasks

Tools

- Protein database: Pfam 4.0 seed alignments database containing 27650 sequences grouped in 1467 families
- Reduction to families containing at least 25 members: 12977 sequences grouped in 279 protein families
- Algorithms implemented in C++ programming language
- OpenMP v2.0 standard used for parallelism
- Computations on SGI Altix 3700 machine, running 128 1.5GHz Intel Itanium2 processors
- Amira 5.0 Software used for visualization

Results

Reduced dataset (12977 protein sequences) - 90.7% (K=30, MinPts=18, Eps=12) Full dataset (27650 protein sequences) - 85.4%

(K=15, MinPts=4, Eps=4)

Efficiency of calculations

Efficiency of processing 1000 (blue) and 3000 (green) random sequences of 50-500 residues on computer cluster

Conclusions

- proposed approach let us visualize similarity between the protein sequences
- computer intensive methods are being applied
 - Needleman-Wunsch Algorithm $O(n^2)$,
 - SNN O(n²),
 - MDS O(n²),
 - Hungarian Algorithm $O(n^3)$.
- complexity reduction may be achieved in MDS by storing M nearest and N futhest neighbors or by using histogram of distances
- execution time was shortened by parallel computation using OpenMP paradigm
- parallel implementation efficiency of all components needs further improvement
- latest Pfam release: 23.0 (July 2008, 10340 families, 3 925 943 sequences)

Thank you for attention. Questions?