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The idea
● Execution of scientific workflows on hybrid infrastructure...
● Some scientific workflows can benefit from being executed on hybrid 

infrastructure
○ In this case Hybrid infrastructure is achieved by combining two of elastic infrastructures 

containers with cloud functions

● The concept was implemented by extending an existing set of tools used to 
execute workflows [3] [4]

○ new Cloud Function component for Workflow Execution Engine

● Validate by experiment
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Workflows
● high level description of the process
● graph representation
● dependency modeling

● decouple experiment from the infrastructure
● improved reusability/reproducibility
● supports parallelization
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HyperFlow
● Simple, yet powerful, workflow execution engine [3]

○ aims to be an abstract workflow execution engine

● Written in JavaScript, uses Node.js runtime, some of the features:
○ lightweight
○ extensible
○ easy to understand and debug

● Doesn’t include support for execution on remote infrastructures
○ this can be achieved through extensions: Functions and Executors

■ function represents a given infrastructure on HyperFlow side
■ Executor is responsible for performing the operation
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The elastic infrastructures
● Highly elastic cloud infrastructures:

○ on demand, almost instantaneous infrastructure provisioning
○ dynamic billing model
○ provide usable computing power
○ no/little system management

■ most of the management is automated or done through ‘infrastructure as a code’ 
concept

● Examples of such infrastructures: containerized environments, cloud functions
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Containers
● Study of running workflows in containerized environment:

M. Orzechowski, B. Baliś. "Container-Based Architecture for Resilient and 
Reproducible Scientific Workflows." CGW Workshop'17

○ targeted at container environments, namely: Kubernetes, AWS ECS etc.

● Promising approach, provides:
○ infrastructure as a code paradigm (by using Terraform)
○ easy infrastructure management
○ autoscaling
○ portability

● Some limitations:
○ Infrastructure indirectly operates on actual VMs
○ Adding new resources isn’t easy
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Cloud functions
● Novel offering from cloud providers
● Developer prepares application or application components in form of source 

code for a given runtime
○ node.js, java, python etc.
○ implements a single handler function

● Cloud provider is responsible for infrastructure/resource provisioning
○ only one configurable parameter: memory size, also impacts available performance

● Function (application) instances are created on demand
○ so called cold start of a function is around 1 second

● callable through: REST API, messaging (AWS SQS), other events
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Cloud functions cont.
● a step further when it comes to elasticity, than containers or PaaS

● Functions provide:
○ Almost instant provisioning of new resources
○ 100ms billing granularity, function’s start overhead is not billed
○ massive parallelism, AWS allows up to 1000 simultaneous executions

● Limitations (compared to containers):
○ limits on run time and memory (15 mins and 3GB at this point)
○ although miniscule, there is still an aspect of ‘cold start’
○ reliability
○ lack of environment reusability
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Cloud function benchmarking
● Performance changes in relation to

memory size
● In most cases there is one dominant value
● More information in [6] [7] [8]

● Ongoing work studying other aspects like:
○ provisioning speed
○ reliability
○ limits of parallelism
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Implementation details
● Container execution uses existing “AMQP Command” Function
● Cloud functions use new “REST Service Command” function

○ HTTP used as a transport layer
○ compatible with multiple executors (exposing a proper API)

● Target infrastructure for each task is chosen before the start
○ Instrumentation is part of workflow graph

● Infrastructure as a code paradigm was implemented by using Terraform
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Experiment setup
● Test two infrastructure models:

○ Container based
○ Hybrid (containers + cloud functions)

● Testing workload:
○ Montage (Image Mosaic Software), a popular example of workflow
○ 0.5 degree workflow
○ over 40 tasks

■ parallelizable
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Experiment results (preliminary)

○ Left chart: single Instance of container-worker hosted by t2.micro managed through ECS
○ right chart: above infrastructure was extended with 256 MB Lambda

○ Overall timespan was reduced, but at a slightly higher cost of execution
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Hybrid Infrastructure scheduling
● Build on a basis of “Cloud function optimizer” [8]

○ workflow preprocessor
○ builds an execution plan, determines target infrastructure and its configuration based on 

certain criteria

● Prepare execution plan based with constraints like:
○ cost
○ timespan/deadline
○ data access overheads
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Conclusions
● Using hybrid infrastructure can be beneficial for certain type of workflows
● Cloud functions can’t be treated as universal replacement for containers, 

rather a supplement
● Overall hybrid infrastructure allows for covering a wider space of possible 

workflow execution constraints
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