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Motivation and objectives 

Motivation: 
providing proper security mechanisms for advanced medical simulations

To address the following critical security-related aspects:
• Authentication, authorization and accounting (AAA)
• Data security during processing and storage
• Mechanisms to ensure data cannot be recovered given reasonable time and 

resources, after being deleted
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REST – Representational state transfer

Rimrock – service used to submit jobs to 
HPC cluster 

Atmosphere – provides access to cloud 
resources

git – a distributed revision control 
system



• Step 1-2 (optional): Users authenticate themselves with the selected 
identity provider (hosted by the project or an external trusted IdP) and 
obtain a secure token which can then be used to authenticate requests to 
the MEE

• Step 3-4: User requests JWT token from the Portal, based on IdP or local 
authentication

• Step 5 – User sends a request to a service (token attached)
• Step 6-7 – Service PEP validates token and permissions against the PDP 

(authorization).
• Step 8 – service replies with data or error (access denied)

Optional interaction by the service owner:
• Step A-B – Service Owner may modify policies for the PDP via:

• the Portal GUI: global and local
• API (e.g. from the Service): local only

IdP – Identity Provider
PDP – Policy Decision Point
JWT – JSON Web Token
PEP – Policy Enforcement Point

AAA security use case



To secure a service its owner first needs to register it in the Portal/PDP.

• Step 1-2: Service Owner logs into the Portal, creates the service and a set 
of Global Policies, and obtains a Service Token

• Step 3: Service Owner configures the service PEP to interact with the PDP 
(incl. setting the service token).

A standard PEP for Web-based services is provided by the DICE team. 
Custom PEPs may be developed using the provided API.

The Service may use its token to:
• query the PDP for user access 
• modify Local Policies for fine-grained access to the service

Registration of a new service



Security features in the MEE Portal 

Security configuration
• Service management – for every service dedicated set of policy rules can be 

defined
• User Groups – can be used to define security constraints

REST API
• Creating a new user session – as a result, new JWT (JSON Web Token) tokens are 

generated for credential delegation
• PDP – Policy Decision Point: check if user has access to concrete resource
• Resource policies – add/remove/edit service security policies



Security management via the UI

Services
• Basic security unit where dedicated security 

constraints can be defined
• Two types of security policies: 

• Global – can be defined only by service 
owner

• Local – can be created by the service on
the user’s behalf 

Groups
• Group users
• Dedicated portal groups:

• Admin
• Supervisor – users who can approve other users

in the portal
• Generic groups:

• Everyone can create a group
• Groups can be used to define security constraints



Security management via REST API

Generate user JWT Token
• User (or other service) can generate new 

JWT token by passing username and 
password

• JWT token can be used for user 
credential delegations by external 
EurValve services

PDP API
• Check if user has right to access a 

specific resource

Resource policy management
• Create/edit/delete local policies by 

external EurValve service on user behalf
• Currently integrated with File Store
• Initial ArQ integration tests underway



FileStore encryption use case

• BLOB Data handling:

• Step 1 – data is sent via encrypted channel to the 
service

• Step 2-3 – data encrypted and stored on disk
• Step 4-5 – data decrypted and retrieved
• Step A-B (optional) – data stored directly to disk
• Step 6 (all) – data sent back to the user

• Currently all data is encrypted (steps 1-6) 
• It may be skipped if needed



Communication between the File 
Store and the Policy Store/PDP

• By default File Store can create top-level private folders
• Each File Store request is evaluated by a PDP on the basis of the requested action,

resource path and user identifier
• Storage operations are performed only as allowed by the PDP
• When creating top-level folders a new policy is created, which grants write, read and

remove permissions only to the user invoking the operation



Encryption performance (1/2)

• The benchmark evaluates the overhead of AES (Advanced Encryption 
Standard) encryption for the File Store based on various settings

• Results were used to find a compromise between speed and security 
for a given settings

• Benchmark scenario
• Generate multiple input files with different sizes
• Use customized prototype module to encrypt files and measure the overhead (no encryption, 

AES with 128, 192 and 256 bits keys)
• Use the same module for decryption – also measure overhead
• Compare decrypted data vs. input (validate the process)



Encryption performance (2/2)

• Benchmark environment:
• CPU: Intel Core i7 2.3 GHz (4 cores)
• RAM: 16GB DDR3 
• OS: Mac OS X  10.9
• Java: 1.8.0_121
• Input: 10 blocks of data 100 MB each (in memory, to avoid network overhead)

• Average speed for AES128
• Encryption: 98.11 MB/s
• Decryption: 91.02 MB/s

• Average speed for AES192
• Encryption: 89.57 MB/s
• Decryption: 84.25 MB/s

• Average speed for AES256 (our choice for production)
• Encryption: 87.94 MB/s
• Decryption: 78.56 MB/s



LUN – Logical Unit Number (Logical Disk)
FUSE – Filesystem in Userspace
AWS S3 – Amazon Web Service S3
DCFS – Distributed Cloud FileSystem

• Proof of Concept of the solution distributing chunks of 
data to different backends:

• Local directories
• Cloud Services (e.g. AWS S3)

• Mountable as FUSE 
• Reduces risk of data leakage if provider is compromised 

Data dispersal proof of concept
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• Security services has been integrated with the EurValve Model Execution
Environment

• We have provided solutions for 2 main use cases:
• Securing access to the MEE
• Securing data stored in the FileStore

• Solution has been successfully validated and deployed in production

• We plan to:
• Add advanced accounting mechanism
• Consider extending data dispersal POC to make it production ready

Summary and future work
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