EurValve NG

Advanced Security Services for Computer
Simulation Research in Medicine

Jan Meizner!, Marian Bubak?!, Daniel Harezlak®, Tomasz Bartyriski!, Tomasz Gubalal,
Marek Kasztelnik!, Maciej Malawski?, Piotr Nowakowski’

AN IACC Cyfronet AGH, Krakow, Poland

é’ CYFRONET http://dice.cyfronet.pl/ ng

http://dice.cyfronet.pl/

Motivation and objectives

EurValve NG

Motivation:
providing proper security mechanisms for advanced medical simulations

To address the following critical security-related aspects:
e Authentication, authorization and accounting (AAA)
e Data security during processing and storage

* Mechanisms to ensure data cannot be recovered given reasonable time and
resources, after being deleted

EurValve platform

Researcher Workstation

User Interfaces

T

Command Line
Interface (CLI)

] [WebUI i] [ScriptAPl !

:

VAN

/~ Model Execution
Environment

AN
\\ N\

Shared security (3}

REST ‘(f/ \‘t)‘ REST

S

Model
Repository

Rimrock

Atmosphere

Q git

Access
Policy
Management

v

H PCute rs

. S

Clouds

WebDAV API

Mounting

Data
collection
Suite

Metadata \

WebDAV
API

2

-

File Store exposing a WebDAV endpoint

EurValve L %)

API — Application Programming
Interface

REST — Representational state transfer

Rimrock — service used to submit jobs to
HPC cluster

Atmosphere — provides access to cloud
resources

git — a distributed revision control
system

(8)

EurValve Portal

Y

(6) (7) (A) (B)

SerViCe u

Service
Owner

AAA security use case {ﬁ..")‘ﬂf q\.,

EurVaIve 3 \

e Step 1-2 (optional): Users authenticate themselves with the selected
identity provider (hosted by the project or an external trusted IdP) and
obtain a secure token which can then be used to authenticate requests to
the MEE

e Step 3-4: User requests JWT token from the Portal, based on IdP or local
authentication

e Step 5 — User sends a request to a service (token attached)

* Step 6-7 — Service PEP validates token and permissions against the PDP
(authorization).

» Step 8 —service replies with data or error (access denied)

Optional interaction by the service owner:

» Step A-B — Service Owner may modify policies for the PDP via:
e the Portal GUI: global and local
* API (e.g. from the Service): local only

IdP — Identity Provider

PDP - Policy Decision Point
JWT - JSON Web Token

PEP - Policy Enforcement Point

EurValve Portal

(2) (1)

Service
Owner

Registration of a new service

EurValve NG

To secure a service its owner first needs to register it in the Portal/PDP.

e Step 1-2: Service Owner logs into the Portal, creates the service and a set
of Global Policies, and obtains a Service Token

e Step 3: Service Owner configures the service PEP to interact with the PDP
(incl. setting the service token).

A standard PEP for Web-based services is provided by the DICE team.
Custom PEPs may be developed using the provided API.

The Service may use its token to:
e query the PDP for user access
 modify Local Policies for fine-grained access to the service

Security features in the MEE Portal

EurValve NG

a Research

W rpatients

€ Files

& Cloud Resources

Security configuration

N e Service management — for every service dedicated set of policy rules can be
defined

Groups

e User Groups — can be used to define security constraints

-3 .)
'Q'g, Administration

Users

Delayed jobs
REST API
e Creating a new user session — as a result, new JWT (JSON Web Token) tokens are
— generated for credential delegation
Resource polcies e PDP - Policy Decision Point: check if user has access to concrete resource

* Resource policies — add/remove/edit service security policies

£8 pLGrid

Services

Services

Basic security unit where dedicated security
constraints can be defined

Two types of security policies:

Global — can be defined only by service

owner
Local — can be created by the service on

the user’s behalf

Security management via the Ul

EurValve Portal

Groups
Group users
Dedicated portal groups:

Admin
Supervisor — users who can approve other users

in the portal

Generic groups:

Everyone can create a group
Groups can be used to define security constraints

Security management via REST AP|

_)EurValve Portal IS

—_—

| e Policy management API

GET /fapi/policies[?path=...

curl -H “X-SERVICE-TOKEN: (service_token}" -H "Authorization: Bearer {user_token}" https://valve.cyfronet.pl/api/policies?paths/path

POST /api/policies

PDP API

e Check if user has right to access a
specific resource

Generate user JWT Token

e User (or other service) can generate new
JWT token by passing username and
password

e JWT token can be used for user
credential delegations by external
EurValve services

Resource policy management

e Create/edit/delete local policies by
external EurValve service on user behalf

e Currently integrated with File Store

e Initial ArQ integration tests underway

User

FileStore encryption use case

(2)

(5)

(B)

FileStore

(A)

-

Encrypt. ~—

module

(3]i TM)

e ——

~) J.
EurValve \

e BLOB Data handling:

e Step 1 —data is sent via encrypted channel to the
service

e Step 2-3 —data encrypted and stored on disk

e Step 4-5 —data decrypted and retrieved

e Step A-B (optional) — data stored directly to disk

e Step 6 (all) — data sent back to the user

e Currently all data is encrypted (steps 1-6)
e |t may be skipped if needed

Communication between the File
Store and the Policy Store/PDP

EurValve NG

e By default File Store can create top-level private folders

e Each File Store request is evaluated by a PDP on the basis of the requested action,
resource path and user identifier

e Storage operations are performed only as allowed by the PDP

e When creating top-level folders a new policy is created, which grants write, read and
remove permissions only to the user invoking the operation

User o

createFolder('/my_folder’, token) :
1 grant?('write’, /my_folder’, user)
L_._.__i

__ OKorDENIED |

mkdir(’/my_folder’)

CREATED 1

I createPolicy(’/my_folder/*', user,
['write', 'read’, 'remove’])

CREATED]

1
- CREATED

— ——

Zat BN | ;
\ N = AT
N TFesi "
-~

Encryption performance (1/2)

S TR

EurValve NG

 The benchmark evaluates the overhead of AES (Advanced Encryption
Standard) encryption for the File Store based on various settings

* Results were used to find a compromise between speed and security
for a given settings

* Benchmark scenario

e Generate multiple input files with different sizes

e Use customized prototype module to encrypt files and measure the overhead (no encryption,
AES with 128, 192 and 256 bits keys)

e Use the same module for decryption — also measure overhead
e Compare decrypted data vs. input (validate the process)

Encryption performance (2/2)

Benchmark environment:
 CPU: Intel Core i7 2.3 GHz (4 cores)
e RAM: 16GB DDR3
e 0S:MacOSX 10.9
 Java: 1.8.0 121
e Input: 10 blocks of data 100 MB each (in memory, to avoid network overhead)

Average speed for AES128
* Encryption: 98.11 MB/s
e Decryption: 91.02 MB/s

Average speed for AES192
* Encryption: 89.57 MB/s
* Decryption: 84.25 MB/s

Average speed for AES256 (our choice for production)
e Encryption: 87.94 MB/s
e Decryption: 78.56 MB/s

EurValve NG

LUN

Client Node

Mounted

FS

AWS-US
S3

Data dispersal proof of concept
EurValve (
* Proof of Concept of the solution distributing chunks of
data to different backends:
e Local directories
LUN Cloud Services (e.g. AWS S3)

* Mountable as FUSE
e Reduces risk of data leakage if provider is compromised

LUN — Logical Unit Number (Logical Disk)
FUSE — Filesystem in Userspace
AWS S3 — Amazon Web Service S3

FUSE DCFS — Distributed Cloud FileSystem

DCFS AWS-EU
Module $3

e > <500
Z 7

Summary and future work)

EurValve NG

e Security services has been integrated with the EurValve Model Execution
Environment

 We have provided solutions for 2 main use cases:
e Securing access to the MEE
e Securing data stored in the FileStore

e Solution has been successfully validated and deployed in production
e We plan to:

 Add advanced accounting mechanism
 Consider extending data dispersal POC to make it production ready

EurValve H2020 Project 689617

é CYFRONET

http://dice.cyfronet.pl 6)6

http://www.eurvalve.eu

http://www.eurvalve.eu/
http://dice.cyfronet.pl/

	Advanced Security Services for Computer Simulation Research in Medicine
	Motivation and objectives
	EurValve platform
	Slajd numer 4
	Slajd numer 5
	Slajd numer 6
	Slajd numer 7
	Slajd numer 8
	FileStore encryption use case
	Communication between the File Store and the Policy Store/PDP
	Encryption performance (1/2)
	Encryption performance (2/2)
	Slajd numer 13
	Slajd numer 14
	EurValve H2020 Project 689617��http://www.eurvalve.eu���http://dice.cyfronet.pl

