
Advanced Security Services for Computer
Simulation Research in Medicine

Jan Meizner1, Marian Bubak1, Daniel Harężlak1, Tomasz Bartyński1, Tomasz Gubala1,
Marek Kasztelnik1, Maciej Malawski1, Piotr Nowakowski1

1ACC Cyfronet AGH, Krakow, Poland
http://dice.cyfronet.pl/

http://dice.cyfronet.pl/

Motivation and objectives

Motivation:
providing proper security mechanisms for advanced medical simulations

To address the following critical security-related aspects:
• Authentication, authorization and accounting (AAA)
• Data security during processing and storage
• Mechanisms to ensure data cannot be recovered given reasonable time and

resources, after being deleted

EurValve platform

User Interfaces

Model Execution
Environment

Model
3

Researcher

Shared security

Model
1 Model

2

Data
collection

suite

Metadata

HPC Clusters

Workstation

Clouds

Rimrock Atmosphere

REST REST

Command Line
Interface (CLI)

Web UI Script API

REST

File Store exposing a WebDAV endpoint

Access
Policy
Management WebDAV API Mounting

WebDAV
API

Model
Repository

API – Application Programming
Interface

REST – Representational state transfer

Rimrock – service used to submit jobs to
HPC cluster

Atmosphere – provides access to cloud
resources

git – a distributed revision control
system

• Step 1-2 (optional): Users authenticate themselves with the selected
identity provider (hosted by the project or an external trusted IdP) and
obtain a secure token which can then be used to authenticate requests to
the MEE

• Step 3-4: User requests JWT token from the Portal, based on IdP or local
authentication

• Step 5 – User sends a request to a service (token attached)
• Step 6-7 – Service PEP validates token and permissions against the PDP

(authorization).
• Step 8 – service replies with data or error (access denied)

Optional interaction by the service owner:
• Step A-B – Service Owner may modify policies for the PDP via:

• the Portal GUI: global and local
• API (e.g. from the Service): local only

IdP – Identity Provider
PDP – Policy Decision Point
JWT – JSON Web Token
PEP – Policy Enforcement Point

AAA security use case

To secure a service its owner first needs to register it in the Portal/PDP.

• Step 1-2: Service Owner logs into the Portal, creates the service and a set
of Global Policies, and obtains a Service Token

• Step 3: Service Owner configures the service PEP to interact with the PDP
(incl. setting the service token).

A standard PEP for Web-based services is provided by the DICE team.
Custom PEPs may be developed using the provided API.

The Service may use its token to:
• query the PDP for user access
• modify Local Policies for fine-grained access to the service

Registration of a new service

Security features in the MEE Portal

Security configuration
• Service management – for every service dedicated set of policy rules can be

defined
• User Groups – can be used to define security constraints

REST API
• Creating a new user session – as a result, new JWT (JSON Web Token) tokens are

generated for credential delegation
• PDP – Policy Decision Point: check if user has access to concrete resource
• Resource policies – add/remove/edit service security policies

Security management via the UI

Services
• Basic security unit where dedicated security

constraints can be defined
• Two types of security policies:

• Global – can be defined only by service
owner

• Local – can be created by the service on
the user’s behalf

Groups
• Group users
• Dedicated portal groups:

• Admin
• Supervisor – users who can approve other users

in the portal
• Generic groups:

• Everyone can create a group
• Groups can be used to define security constraints

Security management via REST API

Generate user JWT Token
• User (or other service) can generate new

JWT token by passing username and
password

• JWT token can be used for user
credential delegations by external
EurValve services

PDP API
• Check if user has right to access a

specific resource

Resource policy management
• Create/edit/delete local policies by

external EurValve service on user behalf
• Currently integrated with File Store
• Initial ArQ integration tests underway

FileStore encryption use case

• BLOB Data handling:

• Step 1 – data is sent via encrypted channel to the
service

• Step 2-3 – data encrypted and stored on disk
• Step 4-5 – data decrypted and retrieved
• Step A-B (optional) – data stored directly to disk
• Step 6 (all) – data sent back to the user

• Currently all data is encrypted (steps 1-6)
• It may be skipped if needed

Communication between the File
Store and the Policy Store/PDP

• By default File Store can create top-level private folders
• Each File Store request is evaluated by a PDP on the basis of the requested action,

resource path and user identifier
• Storage operations are performed only as allowed by the PDP
• When creating top-level folders a new policy is created, which grants write, read and

remove permissions only to the user invoking the operation

Encryption performance (1/2)

• The benchmark evaluates the overhead of AES (Advanced Encryption
Standard) encryption for the File Store based on various settings

• Results were used to find a compromise between speed and security
for a given settings

• Benchmark scenario
• Generate multiple input files with different sizes
• Use customized prototype module to encrypt files and measure the overhead (no encryption,

AES with 128, 192 and 256 bits keys)
• Use the same module for decryption – also measure overhead
• Compare decrypted data vs. input (validate the process)

Encryption performance (2/2)

• Benchmark environment:
• CPU: Intel Core i7 2.3 GHz (4 cores)
• RAM: 16GB DDR3
• OS: Mac OS X 10.9
• Java: 1.8.0_121
• Input: 10 blocks of data 100 MB each (in memory, to avoid network overhead)

• Average speed for AES128
• Encryption: 98.11 MB/s
• Decryption: 91.02 MB/s

• Average speed for AES192
• Encryption: 89.57 MB/s
• Decryption: 84.25 MB/s

• Average speed for AES256 (our choice for production)
• Encryption: 87.94 MB/s
• Decryption: 78.56 MB/s

LUN – Logical Unit Number (Logical Disk)
FUSE – Filesystem in Userspace
AWS S3 – Amazon Web Service S3
DCFS – Distributed Cloud FileSystem

• Proof of Concept of the solution distributing chunks of
data to different backends:

• Local directories
• Cloud Services (e.g. AWS S3)

• Mountable as FUSE
• Reduces risk of data leakage if provider is compromised

Data dispersal proof of concept

AWS-EU
S3

AWS-US
S3

LUN
A

LUN
B

DCFS
Module

Client Node

Mounted
FS FUSE

• Security services has been integrated with the EurValve Model Execution
Environment

• We have provided solutions for 2 main use cases:
• Securing access to the MEE
• Securing data stored in the FileStore

• Solution has been successfully validated and deployed in production

• We plan to:
• Add advanced accounting mechanism
• Consider extending data dispersal POC to make it production ready

Summary and future work

EurValve H2020 Project 689617

http://www.eurvalve.eu

http://dice.cyfronet.pl

http://www.eurvalve.eu/
http://dice.cyfronet.pl/

	Advanced Security Services for Computer Simulation Research in Medicine
	Motivation and objectives
	EurValve platform
	Slajd numer 4
	Slajd numer 5
	Slajd numer 6
	Slajd numer 7
	Slajd numer 8
	FileStore encryption use case
	Communication between the File Store and the Policy Store/PDP
	Encryption performance (1/2)
	Encryption performance (2/2)
	Slajd numer 13
	Slajd numer 14
	EurValve H2020 Project 689617��http://www.eurvalve.eu���http://dice.cyfronet.pl

