

Efficient preprocessing and analysis of omics data: Experiences at University Magna Graecia of Catanzaro

Mario Cannataro

Bioinformatics Laboratory & Data Analytics Research Center, Dep. of Medical and Surgical Sciences University "Magna Græcia" of Catanzaro, Italy

cannataro@unicz.it

CGW 2017, Krakow, Poland – 23-25 October, 2017

Brief History

- 1998: Format start of University of Catanzaro
- 2001/2002: Start of a Inter-University Bachelor onInformatics and biomedical engineering
- 2003: **University Campus** in its initial stage (right)
- 2004: Start of the interdisciplinary PhD Program on Informatics and biomedical engineering
- 2017: University Campus now (bottom)

Core Facilities

- Genomics
- MicroArray
- Proteomics
- Mass Spectrometry
- Bioinformatics
- Nanotechnology
- Biomechatronics

University of Catanzaro, Campus "Salvatore Venuta", Medicine and Bioscience Buildings

University Labs and Classrooms

University

Hospital

Congress Hall

Master and PhD courses on Informatics and Biomedical Engineering,

- within the Faculty of Medicine
- collaboration with Tech Univ. of Milano, Univ. of Napoli "Federico II", Univ. of Calabria

Research groups,

- **Computer Engineering**
- Control Systems & Electronic/Informatics Bio-engineering
- Mechanical Bio-Engineering
- Electronics
- Nanotechnology CGW 2017, Krakow, 24 October 2017

P4 Medicine

- **Predictive, preventive, personalized and participatory (P4) medicine** is an emerging medical model that is based on the customization of all medical aspects (i.e. practices, drugs, decisions) of the individual patient
 - **Predictive medicine**: early diagnosis of a large set of diseases through regular scanning of the omic data (e.g. biomarker discovery)
 - Preventive medicine: prevent the development of some diseases before the appearance of symptoms through the monitoring of 'wellness', i.e. the behaviour of patients avoiding possible unhealthy practices
 - **Personalized medicine** (**Precision medicine**) is an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person. **Pharmacogenomics has a key role.**
 - January 20, 2015, President Obama announced the Precision Medicine Initiative® (PMI) NIH
 - **Participatory medicine**: the active involvement of patients in the medical processes (e.g. patient-driven networks).
 - Participatory Medicine is a model of cooperative health care that seeks to achieve active involvement by patients, professionals, caregivers, and others across the continuum of care on all issues related to an individual's health.' (Society for Participatory Medicine)
 P4 MEDICINE

Pietro H. Guzzi, Giuseppe Agapito, Marianna Milano and Mario Cannataro

OUTLINE

- Experiences at University of Catanzaro in high performance management, preprocessing and analysis of omics data
 - PART I: Genomics data
 - PART II: Proteomics data
 - PART III: Interactomics data
- Conclusions

Part I: Genomics Data

- Microarray-based Genomics Data
 - gene expression and genotyping data
- Automatic preprocessing of gene expression data
 - **micro-CS**: preprocessing and annotation of gene expression data
- Statistical analysis of genotyping data
 - DMET-Analyzer: preprocessing and analysis of DMET (Drug Metabolizing Enzymes and Transporters) SNP (Single Nucleotide Polymorphism) data
 - **coreSNP** (multicore implementation)
- Data Mining analysis of genotyping data
 - DMET-Miner: Association Rule Mining to extract from DMET data Association Rules able to correlate the contemporary presence of SNPs with patient's conditions (e.g. TOX vs NOTOX)

Part I: Genomics Data

- Microarray-based Genomics Data
 - gene expression and genotyping data
- Automatic preprocessing of gene expression data
 - **micro-CS**: preprocessing and annotation of gene expression data
- Statistical analysis of genotyping data
 - DMET-Analyzer: preprocessing and analysis of DMET (Drug Metabolizing Enzymes and Transporters) SNP (Single Nucleotide Polymorphism) data
 - **coreSNP** (multicore implementation)
 - cloud4SNP (cloud-based implementation)
- Data Mining analysis of genotyping data
 - DMET-Miner: Association Rule Mining to extract from DMET data Association Rules able to correlate the contemporary presence of SNPs with patient's conditions (e.g. TOX vs NOTOX)

Gene expression = RNA "volume"

cannataro@unicz.it

CGW 2017, Krakow, 24 October 2017

Single Nucleotide Polymorphisms (SNPs)

- A SNP is a variation in a single nucleotide that occurs at a specific position in the genome and is present in an appreciable percentage (e.g. >1%) within a population
- When in a specific base position, a base (e.g. C) appears in most individuals, but in a minority of individuals the position is occupied by a different base (e.g. A) then there is a SNP at that specific base position.

CGW 2017, Krakow, 24 October 2017

Microarray-based Genomics data analysis

- We considered **gene expression** data and **SNP** (Single Nucleotide Polymorphism) **genotyping data** produced using microarrays
- We addressed two main problems:
 - <u>The automation of the preprocessing pipeline of gene expression</u> <u>microarray data</u>
 - micro-CS: preprocessing and annotation of gene expression data
 - <u>The efficient (parallel) analysis of SNP genotyping microarray data</u>
 - **DMET-Analyzer**: statistical analysis of DMET (Drug Metabolizing Enzymes and Transporters) SNP data
 - **coreSNP**: a parallel implementation of DMET-Analyzer
 - **DMET-Miner**: Association Rules correlating the presence of SNPs with patient's conditions (e.g. TOX vs NOTOX)

Part I: Genomics Data

- Microarray-based Genomics Data
- Automatic preprocessing of gene expression data
 - **micro-CS**: preprocessing and annotation of gene expression data
- Statistical analysis of genotyping data
 - DMET-Analyzer: preprocessing and analysis of DMET (Drug Metabolizing Enzymes and Transporters) SNP (Single Nucleotide Polymorphism) data
 - **coreSNP** (multicore implementation)
- Data Mining analysis of genotyping data
 - DMET-Miner: Association Rule Mining to extract from DMET data Association Rules able to correlate the contemporary presence of SNPs with patient's conditions (e.g. TOX vs NOTOX)

Workflow of analysis of gene expression data

• (i) preprocessing:

- Summarisation recognizes the position of different genes in raw images, associating different regions of pixels to the unique gene that generated them.
- Normalisation corrects the variation of gene expression in the same array due to experimental bias.
- Affymetrix Power Tools (APT) is the command-line tool provided by Affymetrix for preprocessing. It uses some chip-specific libraries
- (ii) annotation: associates each gene to functional information, such as biological processes, and a set of cross reference DB identifiers
 - Annotation is usually done **using vendor-provided libraries** (e.g. Affymetrix)
- (iii) statistical or data mining analysis:
 - Analysis may be performed by external tools (e.g. TIGR MeV, Weka, R, etc.), but this requires data movement and further data reorganization
- (iv) biological interpretation and access to external knowledge bases

OPEN PROBLEM: THIS PROCESS INVOLVES SEVERAL TOOLS AND CHIP-SPECIFIC / VENDOR-SPECIFIC LIBRARIES AND MAY BE ERROR PRONE

CEL File Structure Header Section Intensity Section 1.5, 0.2, 10 -Probeset1 2, 0.1, 25 5.2,2.1,5 Probeset* 3.2,2.1,15 _____ . . . 12, 0.1, 35 _____ 51.2,2.1,14 Probesetr 43.2,2.1,15 -

Affymetrix Power Tools

- The preprocessing of Affymetrix CEL files is performed using specialized tools, e.g. the APT (Affymetrix Power Tools) command line tools
- **apt-probeset-summarize** is an APT tool for summarizing and normalizing expression probe data from CEL files.

G

Dubium sapientiae initium

- It needs library files (either a cdf file or pgf/clf files) for defining probesets
- It can perform different types of summarization, e.g. the Robust Multiarray Average (RMA) and the Probe Logarithmic Intensity Error (PLIER) algorithms
 - For exon arrays, the Detection Above BackGround (DABG) is provided
- It can perform two main types of normalization, the quantile algorithm and the sketch-quantile algorithm, that re-scale each expression value of a dataset.

```
apt-probeset-summarize -a rma-sketch -a plier-mm-sketch -d chip.cdf
-o output-dir --cel-files cel_list.txt
```

```
apt-probeset-summarize -a rma -d HuEx-1_0-st-v2.cdf -o/home/output -
cel-files/home/list.txt
```

- A further step is **annotation**, that allows to associate to each expression value the related gene and further biological annotation,
 - e.g. database identifier, description of molecular function, associated protein domains, Gene Ontology data,
- by using annotation files often provided by chip manufacturer cannataro@unicz.it CGW 2017, Krakow, 24 October 2017

Addressed problems

- The main drawbacks of such an approach are the need:
 - to generate and store intermediate files in a manual way that prevent the automation of the process;
 - to know details of the used chips and related preprocessing tools and libraries;
 - to manually download the most updated summarization and annotation libraries from the vendor website, and
 - to manually import preprocessed files in the analysis platforms (e.g. TM4 MeV, Weka, etc.), that may introduce errors.
- The automation of the preprocessing pipeline could speed-up the entire analysis process and reduce possible errors, allowing the user to concentrate on biological aspects.
- **micro-CS** is a tool to normalize, summarize and annotate gene expression data produced by Affymetrix microarray reducing user intervention
 - system handles the guided selection and automatic upgrading of the software libraries needed by Affymetrix tools to preprocess and annotate gene expressions
 - the tool is available with a stand-alone user-interface or as a TM4 MeV plug-in
 - TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003 Feb;34(2):374-8.

- μ -CS preprocesses Affymetrix microarray data to automatize summarization, normalization, and annotation of microarray.
 - μ -CS users can directly manage binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries.
 - users of the μ-CS plugin for TM4 can manage
 Affymetrix binary files without using external tools,
 such as APT (Affymetrix Power Tools) and related
 libraries.
- μ -CS offers four main advantages:
 - (i) it avoids to waste time for searching the correct libraries,
 - (ii) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or the use of old libraries,
 - (iii) it implements the annotation of preprocessed data,
 - (iv) it may enhance the quality of further analysis since it provides the most updated annotation libraries.
- μ-CS client is freely available (TM4 plugin or standalone tool)

micro-CS

CGW 2017, Krakow, 24 October 2017

Guzzi and Cannataro BMC Bioinformatics 2010, 11:315 http://www.biomedcentral.com/1471-2105/11/315

BMC **Bioinformatics Open Access**

SOFTWARE

 μ -CS: An extension of the TM4 platform to manage Affymetrix binary data CGW 2017, Krakow, 24 October 2017

Pietro H Guzzi*1 and Mario Cannataro*1,2

Update of the Client Databases

Update of the Server Databases

micro-CS User Interface (TM4 plugin version)

pm Window About Hel		Expression File Loader		_ C X	- 0 X
File Adjust Data Metric	Select File Loader Help				
HCL TEASE ST SC	Tab Delimited, Multiple Sample Files TIGR Files	(.))			RN PCA COA TRN
Main View - Main View - N Cluster Manager - Script Manager - Script Manager - Stript Manager	Affymetrix Files CGH Tab Delimited, Multiple Sample GEO Files Other Format Files Annotation	Affymetrix GCOS(using MASS)Files dChip/DFCL_Core Format Files GW Affymetrix Files Bioconductor(using MASS) Files RMA Files Cel Files	○ Affymetrix Array	Browse	(1) User c
- Growy	Retrieve Annotation from Resourcer Upload annotation Expression Table	er Connect		Browse	directly fr

 User can load transparently Cel files lirectly from the TMeV Loader (Madam).

ect File Loader Help	Expression File L	oader 🔤 🖬	0 2
File (Cel Format Files)			
Select expression data direct	ory /hone/andr34hack/Scrivan	ia/Tesi/File/TisMix_MTGenel_CEL Browse	
Available		Selected	
/ home/ andr34hack/Scriv an / home/ andr34hack/Scriv an	a/Tesi/File/Tist Add a/Tesi/File/Tist Add Al a/Tesi/File/Tist Add Al a/Tesi/File/Tist Remov a/Tesi/File/Tist Remov		
Additional Requirements			
Browse Library	ack/HumanGeneST10_TissueData	LCEL study/HuCene-20-st-v1.r3.cdf Browse	
Analysis	/home/andr34hack/salvataggio.to	t Save as	
Data Transformation	rma-bg	· •	
Pm Intensity Adjustment	pm-mm	-	
Quantification Method	rma	•	
		nt Cancel Load	

(2) Then he/she has to set main parameters of summarization (e.g. kind of summarization and related parameters)

(3) Finally, processed files are ready to be exported in a file or loaded in TMeVGW 2017, Krakow, 24 October 2017

Differential transcriptional response to cisplatinum in BRCA1-defective *versus* BRCA1-reconstituted breast cancer cells by microarrays.

MT Di Martino^{1,2}, M Ventura¹, PH Guzzi³, A Pietragalla¹, P Neri², A Bulotta¹, T Calimeri¹, V Barbieri^{1,2}, M Caraglia⁴, P Veltri³, M Cannataro³, P Tassone^{1,2}, and P Tagliaferri^{1,2}

Annals of Oncology 19 (Supplement 9): ix103-ix111, 2008 doi:10.1093/annonc/mdn618

M19 WHOLE GENE EXPRESSION PROFILING SHOWS A DIFFERENTIAL TRANSCRIPTIONAL RESPONSE TO CISPLATINUM IN BRCA-1 DEFECTIVE VERSUS BRCA1-RECONSTITUTED BREAST CANCER CELLS

Di Martino MT^{1,2}, Guzzi PH³, Ventura M¹, Pietragalla A¹, Neri P², Bulotta A¹, Calimeri T¹, Barbieri V^{1,2}, Caraglia M⁴, Veltri P³, Cannataro M³, Tassone P^{1,2} and Tagliaferri P^{1,2}

mput (2011) 15:1505–1512 DOI 10.1007/s00500-010-0600-4

FOCUS

Automatic summarisation and annotation of microarray data

Pietro H. Guzzi · Maria Teresa Di Martino · Giuseppe Tradigo · Pierangelo Veltri · Pierfrancesco Tassone · Pierosandro Tagliaferri · Mario Cannataro

- To study the molecular bases of BRCA1-related differential sensitivity to the drug, we analyzed the whole gene expression profile of HCC1937 and HCC1937/wtBRCA1 cells following in vivo and in vitro exposure of tumor cells to cisplatinum (CDDP)
 - HCC1937 is a BRCA1-defective breast cancer cell line which discloses higher sensitivity to CDDP as compared to the BRCA1 full length cDNA transfected clone HCC1937/wtBRCA1
 - Gene expression profiling was performed by Affymetrix technology using Human GeneArray 1.0ST.
 - Array data were preprocessed using μ-CS and analyzed using Gene Expression Console, GeneSpring and Ingenuity Pathway Analysis (IPA).

cannataro@unicz.it

CGW 2017, Krakow, 24 October 2017

Part I: Genomics Data

- Microarray-based Genomics Data
- Automatic preprocessing of gene expression data
 - **micro-CS**: preprocessing and annotation of gene expression data
- Statistical analysis of genotyping data
 - DMET-Analyzer: preprocessing and analysis of DMET (Drug Metabolizing Enzymes and Transporters) SNP (Single Nucleotide Polymorphism) data
 - **coreSNP** (multicore implementation)
- Data Mining analysis of genotyping data
 - DMET-Miner: Association Rule Mining to extract from DMET data Association Rules able to correlate the contemporary presence of SNPs with patient's conditions (e.g. TOX vs NOTOX)

Affymetrix DMET Plus Premier Pack Microarray Dubium sapientiae initium

- The Affymetrix DMET (Drug Metabolism Enzymes and Transporters) platform investigates 225 ADME genes, i.e. genes involved in Absorption, Distribution, Metabolism and Excretion (ADME) of drugs, for pharmacogenomics casecontrol study.
- **Pharmacogenomics** is a branch of genomics that aims to predict the response to drugs of an individual based on an his/her genotype
 - The hypothesis of DMET analysis is that a different response to drugs may be related to modifications (SNPs) in those ADME genes
- We want identify the SNPs that make effective/ineffective a drug treatment using efficient Statistical Analysis and Association Rule Mining

A	В	С	D	E	F	G	H	1	www.impactjournals.com/oncotarget/ Oncotarget, Advance Publications 20:
	NONRESP	NONRESP	NONRESP	NONRESP	NONRESP	NONRESP	NONRESP	NONRESP	
AM_10001		C/C							
AM_10002		G/G	DMETTM (Dwg Motoboliom Environs and Transportanc).						
AM_10003		C/T	C/T	T/T	C/T	C/T	C/C	C/C	DMET™ (Drug Metabolism Enzymes and Transporters): a
AM_10004		G/G	Pharmacogenomic platform for precision medicine						
AM_10005		C/T	C/T	T/T	C/T	C/T	C/C	C/C	
AM_10006		C/T	C/T	T/T	C/T	C/T	C/C	C/C	
AM_10008		A/A	Mariamena Arbitrio ¹ , Maria Teresa Di Martino ² , Francesca Scionti ² , Giuseppe						
AM_10010		C/T	C/T	C/C	C/T	C/T	T/T	T/T	Agapito ³ , Pietro Hiram Guzzi ³ , Mario Cannataro ^{3,4} , Pierfrancesco Tassone ^{2,*} and
AM_10011		A/G	A/G	A/A	A/G	A/G	G/G	G/G	Pierosandro Tagliaferri ^{2,*}
AM_10012		G/G	Fieldsandro ragilarente						
AM_10013		A/G	A/G	A/A	A/G	A/G	G/G	G/G	
AM_10014		C/T	C/T	C/C	C/T	C/T	T/T	T/T	Taylor for Francis
AM_10016		C/T	C/T	T/T	C/T	C/T	C/C	C/C	
AM_10017		G/G	REVIEW Expert Review of Precision Medicine and Drug						
AM_10019		A/A							
AM_10020		C/T	T/T	C/C	C/C	C/T	T/T	C/C	Development
AM_10021		A/A	Personalized medicine in drug development and clinical practice						
AM_10022		G/G							
AM_10023		A/A	A/A	A/A	A/A	A/A	A/A	A/T	
AM_10024		A/G	G/G	A/A	A/A	A/G	G/G	A/A	
AM_10025		A/G	G/G	A/A	G/G	G/G	G/G	G/G	ISSN: (Print) 2380-8993 (Online) Journal homepage: http://www.tandfonline.com/loi/tepm20
AM_10028		C/C	C/C C/C	C/C	C/C	C/C	C/C	C/C C/C	
AM_10030		C/C G/G	С/С Т/Т	C/C G/G	C/C G/G	C/C G/T	C/C		
AM_10031			G/G				G/G G/G	G/T G/G	Experimental treatment of multiple myeloma in
AM_10033		G/G C/C	C/C	A/A C/C	A/G C/C	G/G C/C	C/C	C/C	
AM_10034			C/C T/T	G/G	G/G	G/T	G/T		the era of precision medicine
AM_10035 AM_10039		G/G T/T	т/т	T/T	T/T	T/T	T/T	G/T T/T	
		-/-	-/-	-/-	-/-	-/-	-/-	-/-	
AM_10042 AM_10044		-/- A/A							, Maria Teresa Di Martino, Mariamena Arbitrio, Pietro Hiram Guzzi, Mario
AM_10044		A/A	Cannataro, Pierosandro Tagliaferri & Pierfrancesco Tassone						

cannataro@unicz.it

CGW 2017, Krakow, 24 October 2017

Workflow of a DMET pharmacogenomics experiment

• **OPEN PROBLEMS:**

- NO BIOINFORMATICS SOFTWARE FOR ANALYZING DMET SNP DATA WAS AVAILABLE AT THE TIME OF RESEARCH (ONLY MANUAL ANALYSIS WITH EXTERNAL SOFTWARE)
- PERFORMANCE ISSUES WHEN INCREASING SIZE OF EXAMINED POPULATION

Workflow of a DMET pharmacogenomics experiment

- Sample collection and DMET chip preparation: biological samples are collected and treated to perform microarray experiments;
 - Affymetrix DMET chip allows the investigation of 1936 probes, each one representing a portion of the genome having a role in drug metabolism;
 - usually samples are divided in two classes, e.g. on the basis of the response to a drug (Population A and B).
- **DMET microarray experiments**: produce raw expression data, contained in .CEL files (one file per sample);
- **DMET data preprocessing and SNPs detection**: Affymetrix proprietary tools, (e.g. **apt-dmet-genotype** command line tool or **DMET Console**) are used to summarize and average expression values contained in .CEL file to produce .CHP files (one file per sample);
 - all .CHP files need to be combined to form a single table containing the detected SNPs for all samples;
 - similarly to gene expression microarray, the SNPs table will contain in position (i,j) the SNP detected by probe i in the sample j;
- SNPs analysis: usually the Fisher statistical test is used to evaluate if a different distribution of SNPs among two classes of samples is statistically significant or not. The analysis, often performed manually using external software, produces a list of SNPs ordered by p-value CGW 2017, Krakow, 24 October 2017

DMET-Analyzer

- DMET-Analyzer is a tool for automated pre-processing and statistical analysis of SNP data generated by the Affymetrix DMET platform
 - the system finds and highlights all statistically significant SNP variations found in the data
- DMET-Analyzer supports the automatic statistical analysis in DMETbased pharmacogenomics studies.
 - It has a simple graphical user interface that allows users (doctors/biologists) to upload and analyze DMET files produced by DMET Console in an interactive way.
- Starting from a DMET dataset, DMET-Analyzer is able to find statistically relevant subsets of SNPs that separate two input classes
 - DMET-Analyzer tests in an automatic way if the distributions of each SNPs detected on each probe on the two classes of subjects (e.g. Healthy vs Diseased, RESP vs NORESP, TOX vs NOTOX) are statistically significant.
- The system is freely available and currently used by the Oncology Unit of the "Mater Domini" University Hospital, Catanzaro, Italy.

Algorithm

DMET-Analyzer allows to test in an automatic way if the different distributions of each SNPs detected on each probe on the two classes of subjects (e.g. RESP vs NORESP) are statistically significant.

- It performs a massive amount of Fisher's tests without user intervention
- It provides several statistical corrections (FDR, Bonferroni) useful for low samples experiments
- It uses two parameters to
 - o discard probes whose SNP distributions are "similar", avoiding useless tests
 - o discard Fisher's tests with high p-value

Probes	$Subject_1$	$Subject_2$	$Subject_3$	$Subject_4$
$Probe_1$	C/C	C/C	T/T	T/T
$Probe_2$	G/C	C/C	-/T	A/A
$Probe_3$	C/T	C/T	C/T	C/T
$Probe_n$	G/G	A/G	G/G	G/G

cannataro@unicz.it

Fig. 2. DMET-Analyser flowchart. CGW 2017, Krakow, 24 October 2017

Data Analysis Workflow

a User chooses the Data File to be loaded.	51 CLASS TOX AM_10001 C/C AM_10002 G/G AM_10003 T/T AM_10005 T/T AM_10005 T/T AM_10006 T/T AM_10010 C/C AM_10011 A/A AM_10011 A/A AM_10013 A/A AM_10013 A/A AM_10014 C/C AM_10016 T/T	52 TOX C/C G/G C/T C/T C/T A/A C/T C/T C/T	53 TOX C/C G/G C/T G/G C/T C/T C/T	S4 TOX C/C G/G C/C A/G C/C C/A C/T G/G G/G T/T C/C	Results are calculated	File Statistics	Allele fi ach prob ad showr	e are cal n to the sher's Test	iculated user	F U1 0.0 0.0 0.0 0.0 0.0 0.0
	Profer Sor 10 pp. 10	c	cal # #	tomating Nature	5	probe_321 0.0 probe_322 0.0 probe_323 0.0	0.5 0.5 0.5	elects th	-0.5 -0.5 -0.5	0.0 0.0 0.0
1.2	-		Sumber of Pusher 32	-				l Test an distributio		
He ma	ults are shown to y visualize annotat	tions and				AM.)	8001	8 11 14 11	16 17 16	19 122
Res He ma links to	y visualize annotat o esternal databas	tions and es.		E NCBI Million Annual Marki an Billio	dbSNP Short Genetic Variations	AM_) AM_) AM_) AM_)	2001 2002 2003 2004 2004 2005 2005			11 110 110
Res He ma	y visualize annotat o esternal databas	tions and es.	-	Al Series Net	Short Genetic Variations	AM) AM) AM)	2001 2002 2003 2004 2004 2005 2005			19 120
Res He ma links to	n visualize annotation esternal databas	Averal and	1	Al Sector Ander South of Ball	Short Genetic Variations	AM_) AM_) AM_) AM_)				
Res He ma links to	ny visualize annotat o esternal databas note set lo: aktive set lo: aktive set lo:	Averentations	1	All Sectors France	Short Genetic Variations	AM.) AM.) AM.) AM.) AM.) AM.)				
Res He ma links to	ro esternal databas	Avectations and es.		Al Policies Annuel Anach ar Bills Lanta Presidentias Tele Refer Lanne Lanner Bi Ali 1 Check a Publick 1	Short Genetic Variations	AM_) AM_) AM_) AM_) AM_) AM_) AM_)	0001 1 1 0002 1 1 0003 1 1 0004 1 1 0005 1 1 0006 1 1 0006 1 1 0006 1 1 0008 1 1 0010 1 1 0011 1 1			
Res He ma links to	ry visualize annotation esternal databas	Avestations and es.		All Sectors France	Short Genetic Variations	AM_) AM_) AM_) AM_) AM_) AM_) AM_)				
Res He ma links to	ry visualize annotation esternal databas	Averations and es.		All Control And All An	Short Genetic Variations	AM., AM., AM., AM., AM., AM., AM., AM.,	2000 2002 2003 <td< td=""><td></td><td></td><td></td></td<>			
Res He ma links to	ry visualize annotati o esternal databas Pi- Piele Set ID: altOPRESE Dised Poster Piele Set ID: altOPRESE Dised Poster Name Chr. presic-almental report 1	Avestations Avestations Avestations Avestations Avestations (BLB209) (BLB20		All Control And All An	Short Genetic Variations	AM.) AM.) AM.) AM.) AM.) AM.) AM.) AM.)				
Res He ma links to	Poste Set ID: deSternal databas Poste Set ID: deStP RS ID: Chromosene Poste Set ID: deStP RS ID: Chromosene Poste Set ID: deStP RS ID: Chromosene Poste Set ID: deStP RS ID: Chromosene Chromosene Chromosene I (chromosene) Chromosene I (chromosene)	Averations and es.		All Control And All An	Short Genetic Variations	AM.) AM.) AM.) AM.) AM.) AM.) AM.) AM.)	2000 2002 2003 <td< td=""><td></td><td></td><td></td></td<>			
Res He ma links to	Poste Set ID: deSternal databas Poste Set ID: deStP 83 ID: Chromosene Providence Pro	Avestations Avestations Avestations Avestations Avestations (BLB209) (BLB20		All Control Annual Sector of Annual All 1 Decision Annual All 1 Decision Annual Children Annual Sector (Concestant) Sector (Concestant) Sector (Concestant)	Short Genetic Variations	AM., AM., AM., AM., AM., AM., AM., AM.,				
Res He ma links to	Professor Internal Contents of the sector of	Avestations Avestations Avestations Avestations Avestations (BLB209) (BLB20		All Control Aller Aller South and Aller Book Control torrer B All 1 Data Patient 1 Child (1919) (Sour appin) Source(1919) (Sour appin) Source(1919) (Sour appin) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910)	Short Genetic Variations	AM_) AM_) AM_) AM_) AM_) AM_) AM_) AM_)				
Res He ma links to	Poste Set ID: deSternal databas Poste Set ID: deStP 83 ID: Chromosene Providence Pro	Avestations Avestations Avestations Avestations Avestations (BLB209) (BLB20		All Control Aller Aller South and Aller Book Control torrer B All 1 Data Patient 1 Child (1919) (Sour appin) Source(1919) (Sour appin) Source(1919) (Sour appin) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910) Source(1919) (Source Aller 1910)	Short Genetic Variations	AM_) AM_) AM_) AM_) AM_) AM_) AM_) AM_)				

cannataro@unicz.it

MG

Dubium sapientiae initium

431 412

SOFTWARE

cannataro@unicz.it

DMET-Analyzer: automatic analysis of Dubium^s Affymetrix DMET Data

Pietro Hiram Guzzi^{1*}, Giuseppe Agapito¹, Maria Teresa Di Martino², Mariamena Arbitrio³, Pierfrancesco Tassone², Pierosandro Tagliaferri² and Mario Cannataro¹

DMET-Analyzer use: loading input data and selection of classes

00	taxstatico%2	0def%20tox	_vs_ctrl_NS(1).xls .:: SNF	Analyser: T	able of Prol	oes &
CTRL	CTRL	CTRL	CTRL	CTRL	тох	тох	TOX
TAX68_(D.	TAX69_(D	. TAX9_(D	TAX70_(D	. TAX71_(D	TAX24_(D	TAX1_(D	TAX1
G/G	G/G	G/G	A/G	G/G	G/G	G/G	G/G
C/C	C/T	C/T	C/T	T/T	C/C	C/T	T/T
A/A	A/A	A/A	A/A	A/A	A/A	NOCALL	A/A
T/T	C/T	C/T	C/C	C/C	T/T	C/C	C/C
G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A
A/T	A/A	A/A	A/A	A/A	A/T	A/T	A/A
A/A	A/A	A/G	A/A	A/G	A/A	A/A	A/G
G/G	G/G	G/G	A/A	G/G	A/G	A/G	A/G
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
A/A	A/A	A/A	A/A	A/A	A/A	NOCALL	A/A
C/T	C/T	C/C	C/T	C/C	C/C	NOCALL	C/C
C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
C/C	C/C	C/T	C/C	C/C	C/T	C/C	C/C
A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A
T/T	T/T	T/T	T/T	T/T	T/T	T/T	T/T
G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
T/T	T/T	T/T	T/T	T/T	T/T	T/T	T/T
G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
G/G	G/G	G/G	G/G	G/G	G/G	NOCALL	G/G
G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
T/T	T/T	T/T	T/T	Т/Т	T/T	T/T	T/T

Start Preprocess

Setting Class Label	
Set ClassA Label:	CTRL
Set ClassB Label:	тох
0	ĸ

CGW 2017, Krakow, 24 October 2017

Heat Map probe navigator window

Frequecy Differences Table - differences of SNPs frequencies for each probe (class B w.r.t class A)

ile 🗛	nalysis	About He	lp											
	Compute	exhaustive	Fisher's Test	ЖB	F	G	H	1	IJ	K	L	M	N	0
		specific Fis			0.0	0.0	0.0	0.038636	. 0.0	0.0	0.0	0.0	0.0	0.0
1_11	compute	specific ris	silers lest	de IVI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
1_11	Statistica	c Tost	0.0	0.0	Hardy	Weiberg Cal	culator 3	0.0	0.0	0.0	0.0	0.0	0.0	0.
1_11	Julistica	5 1630	0.0		That u yo	melberg car	culator a	0.0	0.0	0.0	0.0	0.0	0.0	0.
1_11554	4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
A_11564	4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
1_11576	6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
4_1159	5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
A_1159	7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
A_1160	8 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1160	9 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
A_1161	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
A_1161	3 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1_1162	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1_11622	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
11624	4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1162	5 0.0	0.0	0.0	-0.00454	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.016942.	0.0	0
A_1162	7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1162	9 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.00392	0.0	0.0	0
1163	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1163	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1163	7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
A_1163	9 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
A_1164	3 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1164	7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C
1164	8 0 0	0.0	0.0	0.028925	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

Statistical tests:

г .:: Correctors ::.
Choose to activate one Correction:
 Without Correction
 Activate Bonferroni Correction
Activate FDR Correction
Test significance: 95%
ОК

• The Fishers test calculator uses the data contained into two Occurrences Tables to compute the Fishers test for each couple of allele belonging to the two classes.

- The algorithm avoids the computation of trivial tests, e.g. tests where the Fisher Test contingency table contains three zero values that leads to a p_value=1 are discarded.
- Fisher tests results with *p_value > Ft* (Filter Threshold, default 0.05) are discarded.

Setting correction;
 Executing Fisher's tests;
 Analyze results.

	C	трт	тох	
	-			
	A/A	45	19	
	NOCALL	2	5	
Significance level between two	aucleotides compute	d by	Fisher's T	est: 0.03956636421487205,
without correction.				
Probe Set ID:AM 10221				
	CTR	аL Т	ox	
	C/C 21		5	
Save	A/A 3		5	
Significance level between two	nucleotides compute	d by	Fisher's T	est: 0.03144561495343373,
without correction.	-			
Probe Set ID: <u>AM_10496</u>				
	CTF	L T	OX	
	A/G 26	i	8	
	A/A 11		13	
Signifiannaa lawal hatwaan tura	malaatidaa aamanta	d hu	Eicharle T	ante 0 014112201120111020

TABLE 1Example Dataset Containing Alleles Detected in 8 Subjects
Through 2 Probes (np = 2 and ns = 8)

SNPs	Input	Table
DITES	mput	Table

Probes	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
$Probe_1$	a/a	a/a	a/a	c/t	t/t	t/t	t/t	t/t
$Probe_2$	a/a	a/c	a/a	t/t	a/c	a/c	c/t	t/t

TABLE 6 Probe1 A/A and T/T SNPs Occurrences for Fisher Test

Class AClass Ba/a30t/t04

P-value = 0,0286

TABLE 9 Table for the Class A Occurrences Table

$Probe_1$	a/a, 3	c/t,	1
$Probe_2$	a/a, 2	a/c, 1	t/t,1

TABLE 7 Probe₂ A/A and C/T SNPs Occurrences for Fisher Test

	Class A	Class B
a/a	2	0
c/t	0	1

P-value = 0,3333

The formula below gives the exact hypergeometric probability of observing this particular arrangement of data, assuming the given marginal totals, on the **null hypothesis** that Class A and Class B subjects are equally likely to have those SNPs

Contingency Table	Class A	Class B	
SNP 1	a	b	a+b
SNP 2	С	d	c+d
	a+c	b+d	a+b+c+d (=n)

Fisher : the probability of obtaining any such set of values is given by the hypergeometric distribution

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{(a+b)! \ (c+d)! \ (a+c)! \ (b+d)!}{\binom{a}{a+c}} \\ \begin{array}{c} \text{CGW 2017, Krakow, 24 October 2017} \end{array}$$

Analysis of results: annotations, dbSNP and PharmGKB links

- Each probe presented in the result window:
 - has a link that allows users to visualize annotations
 - is enriched of links to external databases such as dbSNP and PharmGKB allowing to automatically retrieve further SNP information
- PharmGKB stores knowledge about the impact of genetic variation on drug response for clinicians and researchers
- dbSNP is a public-domain archive for simple genetic polymorphisms

000	.:: Annotations ::.	
Probe Set ID:	AM_10109	
dbSNP RS ID:	<u>rs72558192</u>	
Chromosome	10	
Physical Position	96731936	
Strand		
ChrX pseudo-autosomal region 1	0	
Cytoband	q23.33	
Flank		
Allele A		
Allele B		
Associated Gene	ENST00000260682, exon, 0, Hs.282624, CYP2C9 , 1559, cytochrome P450, family 2, subfamily C, polypeptide 9; NM_000771, CDS, 0, Hs.282624, CYP2C9, 1559, cytochrome P450, family 2, subfamily C, polypeptide 9	
Genetic Map		
Microsatellite	D10S2360, downstream, 29989; D10S2358, upstream, 16816	
Fragment Enzyme Type Length Start Stop		
Allele Frequencies		
Heterozygous Allele Frequencies		
Number of individuals/Number of chromosomes		
In Hapmap		
Strand Versus dbSNP		
Copy Number Variation		
Probe Count		
ChrX pseudo-autosomal region 2	0	
In Final List		
Minor Allele		
Minor Allele Frequency		
% GC		
GW 20117, Kra	kow, 24 October 2017	
J	J	

(

bjh correspondence

BPETTION Dubium sapier

A peroxisome proliferator-activated receptor gamma (*PPARG*) polymorphism is associated with zoledronic acid-related osteonecrosis of the jaw in multiple myeloma patients: analysis by DMET microarray profiling

© 2011 Blackwell Publishing Ltd, British Journal of Haematology

doi:10.1111/j.1365-2141.2011.08622.x

- A cohort of 19 patients affected by multiple myeloma (MM) treated with aminobisphosphonate zoledronic acid (ZA) were enrolled in a case-control study.
 - 9 patients presented osteonecrosis (ONJ) after the treatment and
 - 10 patients were the control
- The aim of the study was to investigate the association among specific SNPs and the adverse event ONJ induced by ZA.
- Results demonstrated the presence of 8 SNPs that were related to ONJ.
 - Genotypes were determined using DMET Plus GeneChip.
 - Pharmacogenomic profiles were generated by Affymetrix DMET Console software
 - Statistical analysis was performed by two-tailed Fisher's exact test.
- **DMET-Analyzer identified the 8 SNPs** (with same p-values) that were statistically associated with ONJ occurrence, as those identified in the BJH work using manual analysis, in very less time

coreSNP: the parallel version of DMET-Analyzer

- To face the increasing volume of genotyping data in pharmacogenomics studies, we designed **coreSNP**, a parallel multi-threaded version of DMET-Analyzer
 - Current DMET chips investigate 1936 probes, each one representing a portion of the genome having a role in drug metabolism (225 ADME-related genes are investigated), but novel chips may investigate millions probes
 - Genome Wide Association Studies (GWAS) involve very large populations of patients, thus datasets for pharmacogenomics studies are increasingly huge
- **coreSNP** takes into account the data parallelism that can be exploited when analyzing DMET data and uses a simple Master/Slave parallel programming approach to decompose computation
- coreSNP uses a **Fisher Significance** (**Fs**) threshold to discard probes where SNPs distributions among the two classes A and B are very close, i.e. the Fisher tests involving the SNPs detected on that probe are not computed, thus reducing the computational load of the system:
 - A probe *i* is discarded if for each SNP *j*, / *FDT[i,j]* / <= *Fs*, where FDT is a Frequency Difference Table that contains the difference among the frequencies of the SNP j detected on the probe i, respectively in class B and in class A
 - If Fs=0, i.e. the most conservative option, only probes with identical alleles distributions in class A and B are discarded.
 - User may also choose to avoid filtering and all probes are tested with Fisher.

Data Parallelism in coreSNP

coreSNP Architecture

coreSNP: Master and Slave

Algorithm 1 Master Algorithm

Require: F_a , F_b , // class A and B data files names

Require: ns_a , ns_b , // number of samples in class A and B

- **Require:** ns, // total number of samples $ns = ns_a + ns_b$
- **Require:** np, // number of probes, for DMET data np = 1936
- **Require:** *ncore*, // number of cores
- Require: Fs, // Fisher Significance Threshold, default 0
- Require: Ft, // Fisher Filter Threshold, default 0.05
- 1: Begin
- 2: ComputePartitionsLimits(np,ncore, start, end) // $start_i$, end_i , i = 1, ..., ncore, point to first and last probe (row) of data files partitions
- 3: For Each Core i = 1, ..., ncore
- 4: COBEGIN
- 5: $Result_i = slave(F_a, F_b, ns_a, ns_b, start_i, end_i, Fs, Ft)$
- 6: **COEND**
- 7: Result=merge($Result_1,...,Result_{ncore}$, Ft) // results are merged and ordered by p-value (not significant results have previously been discarded by Slave threads) and SNPs are annotated with URLs to dbSNP and PharmaGKB
- 8: print(Result) // results are showed to the user ordered by p-value
- 9: **end.**

cannataro@unicz.it

Algorithm 2 Slave Algorithm

Require: F_a , F_b , // class A and B data files names

Require: ns_a , ns_b , // number of samples in class A and B

Require: start, end, // limits of data strips assigned to Slave

Require: ns, // total number of samples $ns = ns_a + ns_b$

Require: Fs, // Fisher Significance Threshold, default 0

- **Require:** *Ft*, // Filter Threshold, default 0.05 1: Begin
- 2: For Each Probe $i = start, start + 1, \dots, (end start) + 1$
- 3: Begin
- 4: $Oa_i = Compute Alleles Occurrences(F_a, ns_a, i);$
- 5: Ob_i =ComputeAllelesOccurrences(F_b, ns_b, i);
- 6: $FDT_i = \frac{Ob_i}{nsb} \frac{Oa_i}{nsa}$; // Frequency Difference Table
- 7: DiscardProbes (FDT_i, Fs) ; // eventually discard probe i
- 8: $Result_i$ =ComputeFisherTests(Oa_i, Ob_i, Ft); // computes Fisher tests and discards not significant results
- 9: End;
- 10: $\operatorname{Return}(\operatorname{Result});$
- 11: **end.**

Performance evaluation: SpeedUp

Datasets characteristics; Table Reports the Number of Probes and Samples, and the Datasets Dimension on Disk

Dataset	#probes	#samples	size[Kbytes]
DMET	1,931	28	245
SNP	1,062,599	28	136,673

coreSNP Response Times Without Probe Filtering (Fs = 0.0)

Dataset	1	2	4	8	16
DMET	20,647	10,630	5,926	3,278	2,333
SNP	11,943,086	5,813,502	2,890,561	1,511,745	866,140

coreSNP Response Times with a Light Probe Filtering (Fs = 0.001)

Dataset	1	2	4	8	16
DMET	20,530	10,545	5,876	3,170	2,557
SNP	10,074,622	4,926,823	2,432,625	1,233,423	732,328

Input Probes (#IP), Discarded Probes (#DP), Tested Probes (#TP), Executed Fisher Tests (#FT), Significant Fisher Tests (#SFT), when Varying the Fisher Significance Threshold (*Fs*)

Fs	#IP	#DP	#TP	#FT	#SFT
0.25	1,931	1,918	13	89	23
0.20	1,931	1,904	27	212	37
0.10	1,931	1,582	349	2,704	80
0.05	1,931	1,367	564	4,148	80
0.01	1,931	876	1,055	5,932	80
0.001	1,931	876	1,055	5,932	80
0.0	1,931	0	1,931	7,041	80

cannataro@unicz.it

Part I: Genomics Data

- Microarray-based Genomics Data
- Automatic preprocessing of gene expression data
 - **micro-CS**: preprocessing and annotation of gene expression data
- Statistical analysis of genotyping data
 - DMET-Analyzer: preprocessing and analysis of DMET (Drug Metabolizing Enzymes and Transporters) SNP (Single Nucleotide Polymorphism) data
 - **coreSNP** (multicore implementation)
- Data Mining analysis of genotyping data
 - DMET-Miner: Association Rule Mining to extract from DMET data Association Rules able to correlate the contemporary presence of SNPs with patient's conditions (e.g. TOX vs NOTOX)

Association Rules

- Association Rules are used to find frequent patterns, associations, correlations, or causal structures among sets of items in transaction databases.
- Let X be an item-set, $X \Rightarrow Y$ an association rule and T a set of transactions of a given database
- **Support** is an indication of how frequently the item-set appears in the database
 - The support value of X with respect T is defined as the proportion of transactions in the database which contains the item-set X, and is indicated as supp(X)
- **Confidence** is an indication of how often the rule has been found to be true
 - The confidence value of a rule $X \Rightarrow Y$ with respect to a set of transactions T, is the proportion of the transactions that contains X which also contains Y.
 - Confidence may be interpreted as an estimate of the conditional probability that a transaction having {X} also contains {Y}

$$\operatorname{conf}(X \Rightarrow Y) = \operatorname{supp}(X \cup Y) / \operatorname{supp}(X).$$

• Goal: Find all rules $X \Rightarrow Y$ with minimum confidence and support

Mining Association Rules

- Association rules are usually required to satisfy at the same time:
 - a user-specified minimum support and
 - a user-specified minimum confidence.
- Association rule generation is usually split up into two separate steps:
 - 1. A minimum support threshold is applied to find all frequent item-sets in a database.
 - 2. A minimum confidence constraint is applied to these frequent item-sets in order to form rules.
- Main algorithms are Apriori and Frequent Pattern-Growth (FP-Growth).

DMET-Miner

- DMET-Miner transforms a case-control DMET dataset in a transaction database and it is able to mine Association Rules from such dataset
- DMET-Miner is based on a modified version of the Frequent Pattern-Growth (FP-Growth) algorithm
- The modified version of FP-Growth needs to scan only twice the database to build an FP-Tree, a structure based on extended prefix-tree, making it possible to store in a compressed way crucial information about the frequent patterns.

DMET-Miner

a)I lear chooses the data file

Journal of Biomedical Informatics

Volume 56, August 2015, Pages 273-283

DMET-Miner: Efficient discovery of association rules from pharmacogenomic data

Giuseppe Agapito^{a, Mario}, Pietro H. Guzzi^{a, Mario} Cannataro^{a, b,}

· Show more

doi:10.1016/j.jbi.2015.06.005

a)User chooses the data file				bjoser selects the classe											
o be lo	oaded						for each sample by click	ing							
		0 tab tyt ··	DMET-Mine	r Table of P	mbae & San	nlee "	on data table.		c) Inp	ut table	e is aut	omatic	ally		
	В	С	D	E	F	G			filtere	d and i	nverte	d by Di	MET-Mi	iner	
M_10001 M_10002		NONRESP C/C G/G	NONRESP C/C G/G	NONRESP C/C G/G	NONRESP C/C G/G	NONRE C/C G/G									
M_10003 M_10004		C/T G/G	C/T G/G	C/T G/G	C/T G/G	T/T G/G		PROBE SET	ILAM_10001	AM_10003	AM_10004	AM_10005	AM_10006	AM_10008	AM_1001
M_10004		C/T	C/T	С/Т	C/T	T/T		NONRESP	c/c	C/T	G/G	C/T	T/T	A/A	c/c
M_10006		C/T	C/T	C/T	C/T	T/T		NONRESP	C/C	C/T	G/G	C/T	C/T	A/A	C/T
M_10008	A/A	A/A	A/A	A/A	A/A	A/A		NONRESP	c/c	C/T	G/G	C/T	C/T	A/A	C/T
M_10010		C/T	C/T	C/T	C/T	C/C		NONRESP	c/c	C/T	G/G	C/T	C/T	A/A	C/T
M_10011		A/G	A/G	A/G	A/G	A/A		NONRESP	c/c	C/T	G/G	C/T	C/T	A/A	C/T
M_10012		G/G	G/G	G/G	G/G	G/G		NONRESP	c/c	т/т	G/G	T/T	T/T	A/A	C/C
M_10013 M_10014		A/G C/T	A/G C/T	A/G C/T	A/G C/T	A/A	Rules are calculated	NONRESP	c/c	c/c	G/G	c/c	c/c	A/A	T/T
M_10016		C/T	C/T	C/T	C/T	T/T	and deviation of the state	NONRESP	c/c	C/T	G/G	C/T	C/T	A/A	с/т
M_10017		G/G	G/G	G/G	G/G	G/G	and visualized	NONRESP	c/c	T/T	G/G	T/T	T/T	A/A	C/T
M_10019	NOCALL	A/A	A/A	A/A	NOCALL	A/A		NONRESP	c/c	T/T	G/G	T/T	T/T	A/A	c/c
								NONRESP	C/C C/G	T/T	G/G	C/T	T/T	A/A A/C	c/c
		St	art Preproce	\$ \$					-4 -						
							/	NONRESP	C/C	C/C	G/G	c/c	C/C	A/A	T/T
								NONRESP	NOCALL	C/T	G/G	C/T	C/T	A/A	C/T
							/	NONRESP	c/c	т/т	G/G	т/т	T/T	A/A	C/C
								RESP	c/c	C/T	A/G	C/T	т/т	A/A	C/C
							*	RESP	C/C	T/T	G/G	T/T	T/T	A/A	C/C
AM_10	652_G/C	:14	AM	_13423_0	C/C:14		AM_14234_A/A:14	=RESP: 1	4 (conf: :	1.00)					
АМ_10	652_G/C	:14	AM	_13423_0	C/C:14		AM_14234_A/A:14	AM_1429	97_C/C:1	4	=RE	SP: 14 (co	onf: 1.00)	
AM_10	652_G/C	:14	АМ	_13423_0	C/C:14		AM_14297_C/C:14	=RESP: 1	4 (conf: :	1.00)					

b)User selects the classes

d) Results are shown to the user.

He may visualize annotation and links to

external databases.

BC_10_06_10_tab.txt .:: SNP Analyser: Annotations ::. /U							
Probe Set ID:	AM_10001						
dbSNP RS ID:	<u>rs4148942</u>						
Chromosome	10	J					
Physical Position	73769359						
Strand	+						
ChrX pseudo-autosomal region 1	0						
Cytoband	q22.1						
Flank							
Allele A							
Allele B							

					4											
S NCBI	Shor		SNP tic Variati	ions	14-1	1	ł									
dbVar Clin	Var GaP	Pu	bMed	Nuc	leotide		Protein									
	all variations in	dbSNP o			ariations in	dbVa	r									
Search Entrez dbSNI	P 💽 for		0	ko												
	SNP linked to G	ene (gen	eID:9469) Via	Centia	Annotation											
Have a question about dbSNP? Try searching the SNP FAQ Archive!	ISPP Insked to Gene (gene10:9469) Via Contig Annotation The BAP Geneview page only reports human variation on GRC/54X. A new Mariation Means: Is available to view the gene CHST3 variations in SB/CR37c13 or CBR2038, and will replace SAP GeneView later this year. Please visit the <u>Help Page or YouTube</u> for available features and send your comments and suggestions to KCI1 heldedia.															
Go	Send rall on al															
GENERAL			el (contig mR			seque	2									
Contact Us	mma	transcri			rna orientati	ion	Conti		Contig	Label	L	ist SNP				
Site Map	NM 004273.4		nd NP 00426		orward				GRCh			tly show	ero .			
dbSNP Homepage	XM_006718075.1	plus stra	nd XP_00671	18138.1 fo	orward	N	r_03005	9.14	GRCh	18 <u>y</u>	Sew snp	on Gen	eModel			
NCBI Variation Resources Announcements	Clinical Source	in ger	ne region 💽 c	SNP h	as frequency	doul	ble hit	refr	esh							
dbSNP Summary FTP Download HUMAN VARIATION	gene mos (contig mRNA tr		GRCh38		ntig 1 0059.14 NM_	mrna 00427		004		rna orie forwa			ipt snp o ind 80, ci			
SNP SUBMISSION DOCUMENTATION SEARCH	Region Chr. positio	mRNA pos	dbSNP rs# cluster id	Hetero- zygosity		MAF	Allele	3D	Linkout	Fund	tion	dbSNP allele	Protein	Codon	Amino acid pos	PubMed
RELATED SITES	720058-	19 44Z	rs199515173	N.D.	22					missens	•	G	Glu (E)	1	з	

DMET-Miner Algorithm and Mined Rules

	sure: A set of Weighted Association Rules
1:	Data Structure initialization: TDB, FPTree, β Tree
2:	$TDB \leftarrow convertInput$
3:	for all $x \in TDB$ do
4:	$wminSupp \leftarrow compute(TDB)$
5:	$frequentItemsList \leftarrow compute(wS, wminSupp)$
6:	if $wS(x) \le wminSupp$ then
7:	TDB.remove(x)
8:	$frequentItemsList.supportUpdate \leftarrow row$
9:	else
10:	$frequentItemsList \leftarrow Update(wS(x))$
11:	end if
12:	end for
13:	descendingSorting(frequentItemsList)
	descendingSorting(TDB)
15:	$FPTree \leftarrow frequentItemsList$
16:	for all $t \in TDB$ do
17:	map each item of t on FPTREE
18:	if perfectmatch then
19:	Update(wS(x))
20:	else
21:	nodeCreation(x)
22:	end if
23:	end for
24:	buildFP-Tree()
25:	for all $(node \in FPTREE)$ do
26:	create $\beta Tree$
27:	repeat
28:	if $\beta node_{freq} < wminSupp$ then
29:	remove(cpbnode)
30:	end if
31:	until $\beta Tree = \emptyset$
32:	mineRules()
33:	saveRules()
34:	end for

	Untitled 5.
Rules of Class NONRESP	
IF(AM_11872_C/C:36 66 AM_14348_C/C:36 66 AM_13342_6/6:34 66 AM	
AM_10188_G/G:25 66 AM_10191_C/C:25 66 AM_10193_G/G:25 66 AM_131	11_6/6:24 66 AM_103
Sensitivity: 35.0, Specificity: 46.42857142857143 IF(AM 11872 C/C:36 66 AM 14348 C/C:36 66 AM 13342 G/G:34 66 AM	14100 144.30 57 10
Sensitivity: 47.368421852631575. Specificity: 78.96774193548387	14100_A/A133_00 AN
IF(AM 11872 C/C:36 66 AM 14348 C/C:36 66 AM 13342 G/G:34 66 AM	14105 A/A133 56 AM
66 AM 10191 C/C:25 66 AM 10193 G/G:25 66 AM 13141 G/G:24 66 AM	
Sensitivity: 29.508196721311474, Specificity: 33.3333333333333333	
IF(AM_11872_C/C:36 66 AM_14348_C/C:36 66 AM_13342_6/6:34 66 AM	_14106_A/A:33 66 AM
Sensitivity: 50.0, Specificity: 78.57142857142857	
IF(M_11872_C/C:36 66 AM_14348_C/C:36 66 AM_13342_G/G:34 66 AM_	
46 AM_12114_G/G:38 &6 AM_10856_A/A:27 &6 AM_10177_T/T:25) THEN Sensitivity: 41.6666666666666667. Specificity: 60.71428571428571	NUNRESP conf: 0.92
IF(AM 11872 C/C:36 66 AM 14348 C/C:36 66 AM 13342 G/G:34) THE	NONDESD conf. A.A.
Sensitivity: 58.620689655172406. Specificity: 93.3333333333333333	a manager courts ava
IF(AM 11872 C/C:36 66 AM 14348 C/C:36 66 AM 13342 G/G:34 66 AM	14105 A/A:33 55 AM
AM 10188 G/G:25 66 AM 10191 C/C:25 66 AM 10193 G/G:25 66 AM 131/	
Sensitivity: 38.095238095238095, Specificity: 52.0	
IF(AM_11872_C/C:36 66 AM_14348_C/C:36 66 AM_13342_G/G:34 66 AM	_14106_A/A:33) THE
Sensitivity: 55.0000000000001, Specificity: 89.28571428571429	
IF(AM_11872_C/C:36) THEN NONRESP conf: 1.0	
Sensitivity: 80.0, Specificity: 180.0	
IF(AM_11872_C/C:36 && AM_14348_C/C:36) THEN NONRESP conf: 1.0 Sensitivity: 67.9245283818868, Specificity: 180.0	
IF(M 11872 C/C:36 66 AM 14348 C/C:36 66 AM 13342 G/G:34 66 AM	14106 A/A:33 64 AM
AM 10056 A/A:27 66 AM 10177 T/T:25 66 AM 10188 G/G:25) THEN NOT	
Sensitivity: 41.6666666666666667. Specificity: 60.71428571428571	CALLER CONTENT AND
IF(AM_11872_C/C:36 66 AM_14348_C/C:36 66 AM_13342_G/G:34 66 AM_	14105_A/A:33_66_AM
AM_10177_T/T:25 66 AM_10188_6/6:25 66 AM_10191_C/C:25) THEN N	NRESP conf: 1.0
Sensitivity: 41.6666666666666667, Specificity: 60.71428571428571	
IF(AM_11872_C/C:36 && AM_14348_C/C:36 && AM_13342_G/G:34 && AM_	
AM_10177_T/T:25 66 AM_10188_G/G:25 66 AM_10191_C/C:25 66 AM_1019	83_6/6:25) THEN NO
Sensitivity: 41.6666666666666667, Specificity: 60.71428571428571	d all farmer Property
Number of Strong Rules founded:13 with confidence value: 60.0 an	a wiwiwaw Pobbolt
Rules of Class RESP	
IF(AM 18338 G/G:52 66 AM 12991 C/C:51 66 AM 14794 A/A:48 66 AM	14525 G/G:45 64 AM
Sensitivity: 74.46808510638297, Specificity: 58.536585365853654	
IF(AM_10330_G/G:52 66 AM_12901_C/C:51 66 AM_14794_A/A:48 66 AM	14525_6/6:45 && AM
Sensitivity: 75.47169811320755, Specificity: 65.71428571428571	
IF(AM_18338 G/G:52 && AM_12991 C/C:51 && AM_14794 A/A:48 && AM	14525_G/G:45) THE

IF(AM_10330_G/G:52 66 AM_12991_C/C:51 66 AM_14794_A/A:48) THEN RESP conf: 0.9411 Sensitivity: 72.3076923076923, Specificity: 78.2608695521739 IF(AM_10330_G/G:52 66 AM_12991_C/C:51) THEN RESP conf: 0.9807692307692307 Sensitivity: 67.56756756756756756, Specificity: 85.71420571420571

Number of Strong Rules founded:7 with confidence value: 60.0 and minimum Support v

Sensitivity: 72.1311475409836, Specificity: 70.37037037037037037

IF(AM_10330_G/G:52) THEN RESP conf: 0.9811320754716981 Sensitivity: 64.55696202531645, Specificity: 88.888888888888888

- DMET-Miner produces rules able to discriminate distinctive features for each class.
- DMET-Miner makes easy to profile in what class new subjects belong (e.g. RESP, NORESP) on the basis of their SNPs

Comparison among DMET-Miner, Weka and Rapid Miner

- We have compared the FP-Growth algorithm implemented in DMET-Miner with the FP-Growth algorithm implemented in Weka (version 3.6.10) and the FP-Growth algorithm available in RapidMiner (version 5.3.013).
- Weka and RapidMiner were not able to directly load the DMET dataset produced by the DMET platform
- In order to compare DMET-Miner FP-Growth with Weka FP-Growth and RapidMiner FP-Growth on the same conditions, we have given as input to Weka and RapidMiner the filtered dataset produced by our software.
- In this way we ensure that the inputs given to DMET-Miner, RapidMiner and Weka have the same dimensions.

Datasets

- The comparison of the FP-Growth algorithm implemented in the three software tools was tested using five synthetic DMET datasets. We built the synthetic datasets containing the same number of probes as a real DMET dataset (1, 936 probes) and doubling the number of samples (in the 13 experiments we analyzed five datasets with respectively 25, 50, 100, 200 and 400 samples for each dataset) grouped into two classes.
- We populated these datasets with randomly significantly different distributions of SNPs.
- The datasets contain data related to samples from subjects belonging to two classes: subjects which respond to drugs (class RESP) and subjects which do not respond to drugs (class NONRESP), simulating a classical case-control study.
- The dimensions of the datasets analyzed range from 300KB for the dataset with 25 samples to about 3.1MB for the one with 400 samples

Fisher Test Filtering

• Number of meaningful probes (rows) after using the Fisher Test Filtering

Dataset	#Probes	#Probes
		using Filtering
25	1936	45
50	1936	48
100	1936	57
200	1936	76
400	1936	78

Execution Times

Execution time of the algorithms varying the minimum support using the 100 samples dataset. The execution time is obtained in function of the value of minimum support used and the number of mined rules. The dotted line (top part of figure) represents the running time of RapidMiner, the dashed line (middle part of figure), represents running time of Weka, the continuous line (bottom part of figure) represents the running time of DMET-Miner.

Memory Consumption

Memory consumption of RapidMiner, Weka and DMET-Miner when doubling the size of the input dataset. The dotted line (top part of figure) represents the memory consumption of RapidMiner, the dashed line (middle part of figure), represents the memory consumption time of Weka, the continuous line (bottom part of figure) represents the memory consumption of DMET-Miner. cannataro@unicz.it CGW 2017, Krakow, 24 October 2017

OUTLINE

- Experiences at University of Catanzaro in high performance management, preprocessing and analysis of omics data
 - PART I: Genomics data
 - PART II: Proteomics data
 - PART III: Interactomics data
- Conclusions

Proteomics data

- Introduction to Mass Spectrometry
- MS-Analyzer: service oriented platform for preprocessing and mining of MS data
 - MS-Analyzer = Ontology + Spectra Services + Workflow
- EIPEPTIDI: enhanced protein identification from ICAT MS/MS data

Early diagnosis of cancer

Lancet 2002; 359: 572-77

MECHANISMS OF DISEASE

Mechanisms of disease

O Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin III, Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills, Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

Recently MS has been used to analyse low weight proteins present in serum/plasma for early diagnosis of tumours

cannataro@unicz.it

MS-based Proteomics

MS at UMG

MALDI-TOF

Applied Biosystems Voyager DE-STR

Applied Biosystems QSTAR XL7, LKGRdM, S/MSber 2017

ESI-QqTOF

cannataro@unicz.it

Tandem mass spectrometry (MS/MS)

CGW 2017, Krakow, 24 October 2017

Spectra Preprocessing

- Noise Reduction
 - **Base line subtraction** flattens the base profile of a spectrum
 - *Smoothing* reduces the noise level in the whole spectrum.
- Binning
 - groups measured data into bins
 - aggregate intensity (e.g. the sum of the intensities in the bin)
 - representative m/Z value (e.g. the median or the one with maximum intensity)
- Normalization
 - aims to make intensity comparable across different spectra.
- Peaks alignment
 - The same peak (e.g. the same peptide) may have different m/Z values across samples
 - finds a common set of peak locations (i.e. m/Z values) 50
 in a set of spectra, so that all spectra have common m/Z values for the same biological entities

cannataro@unicz.it

CGW 2017, Krakow, 24 October 2017

Spectra analysis

• Biomarker discovery

 Analysis of collection of spectra (usually by using data mining or machine learning) to find discriminating peaks among different conditions (e.g. healthy, diseased)

• Protein/Peptide identification

- Identification of protein/peptide associated to a peak, e.g. through MS/MS and database search (Mascot, Sequest, X!Tandem)
- Qualitative vs quantitative proteomics
 - MALDI-TOF or SELDI-TOF give a snapshot of a sample, without providing quantitative information nor complete identification
 - Labelling techniques, such as ICAT or SILAC, coupled to tandem MS (E.g. ICAT-based LC-MS/MS) allow quantification and identification of proteins

MS data

- The basic MS data is a long sequence of (intensity, m/z) value pairs
- Indeed, different MS data formats do exist depending on:
 - Ionization (ESI, MALDI, TOF)
 - Separation (e.g. GAS or Liquid Chromatography)
 - More spectra at different (retention) times
 - MS approach (e.g. MS vs MS/MS)
 - One spectrum/sample vs more spectra/sample
 - Labeling
 - intensity in a sample is a measure relative to a control one
- Moreover, each MS company usually uses a proprietary format
- Heterogeneity in spectra data is an issue

mzData

- mzData was the first XML-based data model defined by HUPO-PSI (Human Proteome Organization-Proteomics Standard Initiative) to standardize mass spectrometry-based experimental data
- mzData schema comprises a
 - **description** element describing metadata about the experiment (e.g. administrative information, data about instrument and software used to generate the spectra),
 - and a **spectrumList** element that encloses a set of **spectrum** elements.
- Each spectrum element stores, respectively, all the **m/z** and **intensities** values of the spectrum as Base64 encoded strings.
 - Base64 encoding allows to represent arbitrary sequences of octets through a 65-character alphabet (each 6 bits are represented as a printable character).
 - Base64 allows to easily transmit MS data over Internet protocols and can be stored into XML documents.

Issues in Mining Spectra Data

- Loading of the raw spectra produced by mass spectrometer
- **Converting** (eventually) in a standard format (mzXML, mzData),
- **Preprocessing** of the raw spectra data,
- **Preparation** of the data mining input file (e.g. Weka ARFF file),
- Data Mining analysis (e.g. classification) of mass spectra,
 - CRISP-DM methodology,
 - Clementine, Weka, and SPSS platforms
- Knowledge Models visualization (e.g. decision tree)
 - represented in a standard language as PMML

• Key issues

- Service Oriented Distributed Computation
- Efficient spectra management
- Provenance data

Cannataro M, Barla A, Flor R, Jurman G, Merler S, Paoli S, Tradigo G, Veltri P, Furlanello C. A grid environment for high-throughput proteomics. **IEEE Trans Nanobioscience**, 6(2):117-23, 2007.

M. Cannataro, P. Veltri: MS-Analyzer: preprocessing and data mining services for proteomics applications on the Grid. **Concurrency and Computation: Practice and Experience** 19(15): 2047-2066, 2007.

MS-Analyzer

- MS-Analyzer is a software platform for the preprocessing, management and data mining analysis of MS data. It uses
 - domain ontologies to model
 - software tools (e.g. preprocessing and mining) and their relationships
 - data sources (e.g. MALDI-TOF, LC-MS/MS spectra datasets)
 - constraints (e.g. binning cannot be applied twice)
 - and workflow techniques to design "in silico" experiments.
- MS-Analyzer:
 - acquires, preprocesses and manages MS data
 - offers filtering, preprocessing, and DM services
 - sharing experiments data, workflows and knowledge

MS-Analyzer Ontologies

MS-Analyzer GUI

UMG

Dubium sapientiae initium

CGW 2017, Krakow, 24 October 2017

Ontology Manager

- Allows
 - loading user-defined OWL ontologies
 - browsing and searching bioinformatics tools
 - green services can be used in the editor by drag&drop

Dataset manager

- Each experiment is represented as a tree containing
 - raw and preprocessed datasets
- Different source spectra are supported
 - peak list, TXT, CSV, ARFF
- Different formats to be given in input to data mining
 - ARFF, Clementine
- The user can
 - Add a new experiment
 - Loading of experiment

Workflow Editor

- UML-based notation
- Services are taken from the ontology pane
- Datasets are taken from the Dataset pane
- Constraints expressed by the ontology are enforced at composition time
- Ongoing: generation of a BPEL WF schema to be scheduled by a (Grid) workflow engine

UNIG M. C mini

M. Cannataro, P. H. Guzzi, T. Mazza, G. Tradigo, P. Veltri: Using ontologies for preprocessing and mining spectra data on the Grid. **Future Generation Comp. Syst**. 23(1): 55-60 (2007)

Dubium sapientiae initium

A Grid Environment for High-Throughput Proteomics

Mario Cannataro^{*}, Associate Member, IEEE, Annalisa Barla, Roberto Flor, Giuseppe Jurman, Stefano Merler, Silvano Paoli, Giuseppe Tradigo, Pierangelo Veltri, and Cesare Furlanello, Associate Member, IEEE

Protein Identification with Tandem Mass Spectrometry (MS/MS)

- Detection: first MS detects and selects the most abundant peptides (detection)
- Discovery: second MS analyzes such peptides producing a new spectrum
- Identification/Quantitation: the list of peaks is used to query different protein/peptide identification tools
 - MASCOT, ProteinProspector, Sequest
- To obtain a <u>quantitative</u> measurement about the protein abundance, MS may be coupled with opportune sample preparation protocols.
 - e.g. proteins can be identified by using tandem mass spectrometry with ICAT (Isotope Coded Affinity Tag) protocol for sample preparation.

EiPeptiDi: Enhanced ICAT Peptide Identification Discovery Tool

- Identified peaks (m/Z, retention time, intensity) + name of originating peptide/protein are stored in a database
- In new experiments, **peaks detected by the first MS, but not selected for second MS** can be identified by searching for "similar" peaks (m/Z, retention time, intensity) in the database

EiPeptiDi Algorithm

procedure PeptideDiscovery(F, NF)// F contains the peptides found within samples with masses, retention times // NF contains masses and retention times not assigned within samples const $MAX_MT = 0.00003$; //mass tolerance 30 ppm const $MAX_RTT = 3$; //retention time tolerance var $\Delta_m, \Delta_{StartTime}, \Delta_{EndTime}$: real; begin for each $f_i = (s_i, p_i, r_i, m_i) \in F$ do begin for each $nf_i = (s_i, r_i, m_i) \in NF$ do begin $//calculate m_i$ tolerance $\Delta_m := MAX MT * m_i;$ $\Delta_{StartTime} := \mathbf{abs}(r_j.startTime - r_i.startTime);$ $\Delta_{EndTime} := \mathbf{abs}(r_i.endTim\epsilon - r_i.endTime);$ // Verify Mass And Retention Time if $((m_i - \Delta_m < m_i < m_i + \Delta_m)$ and $\Delta_{StartTime} \leq (MAX_RTT/2)$ and $\Delta_{EndTime} \leq (MAX_RTT/2))$ then // Assign the peptide p_i to not found nf_i nf_i . Add Peptide As I dentified (p_i) : $//p_i$ is also contained in sample s_i end: end: end PeptideDiscovery;

EiPeptiDi GUI

Query			
SHOW peptides ProICAT® in s	found by 4 SHOW peptides found Peptides mapping Peptides found Pep	de ALL Samples FIND new peptides 6 ▼ □ Cali in sample Nb	brate
🛅 Result Query peptide in Samples			
Export Table			
Peptide			
	(MS identifications other samples) SHOW peptide (in green peptides discovered) ched Peptide AVGDKLPECEADDGCPKPPEIAHGYVEH: AATGECTATVGKR	SVR Protein Name	s discovered
	ALVLIAFAQYLQQCPFEDHVK		1
F_pept_Matched_seq	AMACVR	NF_mw_H	NF_mw_L
AATGECTATVGKR	APLCIPAR ATLVCLISDFYPGAVTVAWK	1499.7950016081984	1490.7585382554
	AVGDKLPECEADDGCPKPPEIAHGYVEH	2668.432388531762	2659.36173381933
ALVLIAFAQYLQQCPFEDHVK	CCAAADPHECYAK		2659.43022655867
AMACVR	CDEWSVNSVGK		876.44444600700
AMACVR		000.179009000110	876.45016259206
APLCIPAR ATLVCLISDFYPGAVTVAWK	1.017630044088661	1075.5601884848738	1066.5339557876
	0.8651842660051526 2.4336652389882674	2389.311871452384	2380.2830875268
AVGDKLPECEADDGCPKPPEIAHGYVEHSVR CCAAADPHECYAK	1.0944886270675305	3789.9229822640823	3771.87752254048 2060.9342518782
	CDEW5VN5VGK 1.3122134241858816 1458.7035471952795		
CHPGYKPTTDEPTTVICQK		2589.338663366075	1449.667871857291 2571.2850913790408
CLKDGAGDVAFVK	0.8377181083892534	1557.8344032675893	1548,7999860677
CLODGAGDVAFVK	0.8970592231256699	1557.8344032675893	1548.79998606775
CLUDGAGDVALVK	1.398730280813647	1166.6844392901028	1157.6572029028
COSFRDHMK	1.1688622409738474	1386.6846494407478	1377.6473575489
CTEGENVDKK	1.394087280748876	1375.6943413443173	1366.6642423264
CVVQHTASK	3.2939572340869656	1207.6292187010074	1198.5908689296
DETCVHQALK	1,3564713950568992	1396.7315724957223	1387.70248720645
DIASGLIGPLIICK	1.556775555565552	1647.9770735761595	1638.9503984200
DIASGLIGPLIICK	1.5472557042132606	1647.9770735761595	1638.9503984200
DIPMNPMCIYR	0.9127235434809636	1587.7772007597548	1578.7486786641
	1.2643717200595646	1164.6015334462336	1155.5747733593
DKEACVHK			

EiPeptiDi is available on line at:

http://bioingegneria.unicz.it/~veltri/projects/eipeptidi

cannataro@unicz.it

UNG

Experimental Results

• In a 7 samples data sets we increase the number of Identified Peptides of 50 % (av) using EiPeptiDi.

Experimentation

- EIPETIDI has been successfully used to improve the identification of proteins used to discriminate between different classes of familial adenomatous polyposis (FAP) patients
 - Barbara Quaresima, Telma Crugliano, Marco Gaspari, Maria Concetta Faniello, Paola Cosimo, Rosa Valanzano, Maurizio Genuardi, Mario Cannataro, Pierangelo Veltri, Francesco Baudi, Patrizia Doldo, Giovanni Cuda, Salvatore Venuta, Francesco Costanzo, A proteomics approach to identify changes in protein profiles in serum of familial adenomatous polyposis patients, Cancer Letters 272(1):40-52,8 December 2008, http://dx.doi.org/10.1016/j.canlet.2008.06.021

OUTLINE

- Experiences at University of Catanzaro in high performance management, preprocessing and analysis of omics data
 - PART I: Genomics data
 - PART II: Proteomics data
 - PART III: Interactomics data
- Conclusions

Interactomics Data

- Interactomics
 - Protein-to-Protein Interactions (PPI)
 - PPI Databases and Standards
 - Protein Complex Prediction
- Experiences at University of Catanzaro:
 - **IMPRECO**: a meta-predictor for protein complexes
 - **CytoMCL**: Markov Clustering of Metabolic Networks in Cytoscape
 - **CytoSeVis**: Semantic Similarity-Based Visualization of PPI Networks in Cytoscape
 - **ONTOPIN**: using ontologies for querying PPI databases

Interactomics

- **Interactomics** is the study of the whole set of protein interactions
 - Protein to Protein Interaction (PPI) network.
- PPI Networks are usually modeled as undirect graphs.
 - Global analysis investigated main properties.
- Different network models have been proposed:
 - Scale Free
 - Random Graphs
 - Geometric Random Graph

M. CANNATARO, P. H. GUZZI, and P. VELTRI, Protein-to-Protein Interactions: Technologies, Databases, and Algorithms, ACM Computing Surveys, 43(1), November 2010

Flow of Information in Interactomics

From wet lab to in silico analysis and prediction r 2017

- Verified Interactions DBs store experimentally determined (Yeast 2 Hybrid, Protein Micro Arrays, Mass Spectrometry) PPI data
 - DIP (Database of Interacting Proteins), BIND (Biomolecular Interaction Network Database), MIPS, MPCDB, CORUM
- Predicted Interactions DBs store interactions predicted in silico:
 - **OPHID** maps experimental interactions determined in model organisms into human interactions.
 - **POINT** projects verified interactions into human orthologs and filters interactions considering functional information.
 - IntNetDB predicts interaction by integrating different information (mRNA, co-expression, sequence similarity)
- Standards

Dubium sapientiae initium

- BioPax, IMEx, PSI-MI, SBML, SIF

Sylvain Brohée¹ and Jacques van Helden. Evaluation of clustering algorithms for proteinprotein interaction networks BMC Bioinformatics. 2006; 7: 488.

Complex Prediction Algorithms

- A **protein complex** is a group of two or more associated proteins which interact sharing the same biological goal
 - i.e. a cluster in the PPI graph
- The Markov Cluster algorithm (MCL) [van Dongen 2000] finds clusters on a graph by simulating a stochastic flow and then analyzing its distribution
- The MCODE algorithm, takes in input an interaction network and tries to find complexes by building clusters.
- The Restricted Neighborhood Search (RNSC) predictor, after an initial random clustering, uses a cost-based local search algorithm based on the tabu heuristic

MCL

IMPRECO: A Tool for Improving the Prediction of Protein Complexes

Mario Cannataro, Pietro H. Guzzi, Pierangelo Veltri

Bioinformatics Laboratory, University "Magna Græcia" of Catanzaro, Italy cannataro@unicz.it

IMPRECO: Improving the prediction of protein complexes

UNC The IMPRECO Algorithm

- The rationale underlying the proposed metapredictor is to combine different predictor results using an integration algorithm able to gather (partial) results from different predictors
- The integration algorithm starts by integrating results (i.e. clusters) obtained by running different available predictors.
- Three different cases are considered by evaluating the topological relations among clusters coming from the considered predictors:
 - 1. **equality:** the same clusters are returned by all (or by a significant number of) predictors,
 - 2. **containment:** it is possible to identify a containment relation among (a set of) clusters returned by all (or by a significant number of) predictors;
 - 3. **overlap:** it is possible to identify an overlap relation among (a set of) clusters returned by all (or by a significant number of) predictors;

Validation of Predicted Complexes

- To estimate the integration quality, IMPRECO uses an **evaluation module based on a reference database, i.e. a catalog of verified complexes** (e.g. the MIPS catalog)
- For each cluster the evaluation module calculates the measurements of sensitivity, positive predictive values and accuracy .
 - The first measure is an average representing the fraction of proteins of a complex that are found in a common cluster. When only a big cluster is found, the sensitivity tends to one.
 - The second measure represents the fraction of members of a cluster that belong to a given complex. When each protein belongs to one cluster, PPV is 1, conversely to the previous measure.
 - Thus, the third measure, being the geometric average of sensitivity and ppv represents a trade-off.

http://bioingegneria.unicz.it/~guzzi/

The IMPRECO TOOL

MetaClustering	
Load Integrate Results Utilities	
Instructions Log Output Evaluation	
1) Load Clustering Outputs	Clean Memory
2) Set Parameters	
3) Launch Integration Algorithm	
Membership Value 0	Parameters
Sub Graph Intersection Smallest 💌	
OverLap Intersection Smallest OverLap Percentage 0.1	
Integration Schema Templat	
Threshold of Dimension 3	

cannataro@unicz.it

Preliminary Results/1

In the first experiment we used a yeast network of 1094 nodes and 14658 edges and we run the MCL, RNSC and MCODE algorithms, obtaining respectively 165, 306 and 73 clusters.

Sub Graph Intersection Smallest Image: Constraint of the section	Membership	Strong Value 0	Parameter	Value
OverLap Intersection Smallest OverLap Percentage 0.1 Integration Schema Templat Integration Schema Templat			TM	1
Integration Schema Templat V Overlap Percentage 0.1	Sub Graph Intersection	Smallest 💌	IS	Biggest
	OverLap Intersection	Smallest VerLap Percentage 0.1	II	Biggest
Threshold of Dimension 3 TD 2	Integration Schema	Templat 💌	Overlap Percentage	0.1
	Threshold of Dimension	3	TD	2

Parameter - Algorithm	MCODE	MCL	RNSC	IMPRECO	C
Clusters No.	73	165	306	155	
Sensitivity	0,34	0,47	0,46	0,89	
PPV	$0,\!48$	0,69	0,59	0,59	
Accuracy	0,40	0,57	0,52	0,70	

cannataro@unicz.it

CytoMCL: Markov Clustering of Metabolic Networks in Cytoscape

Mario Cannataro, Pietro H. Guzzi Bioinformatics Laboratory, University "Magna Græcia" of Catanzaro, Italy cannataro@unicz.it

CytoMCL rationale

- The Markov Clustering Algorithm (MCL) is a well-known algorithm for clustering graphs.
- Cytoscape is a tool for visualizing and analyzing networks based on an extensible architecture.
- Nevertheless MCL does not provide a graphical user interface and cannot be used in the Cytoscape platform
- CytoMCL is a Cytoscape plugin that finds clusters in a graph by using the Markov Clustering Algorithm.
 - Based on an intuitive interface it is able to load a network from Cytoscape, to analyze it and to visualize resulting clusters into Cytoscape.

Starting the plugin

🗯 Cytoscape	File Edit View Selee	Layout Plugins Help 🤨 🕏	奈 🐠 💽 (Caricata) lun 1	15.31 Q
9 🔿 🔿		Cytose Manage Plugins ity.cys)		
	Ð, Q, Q, 🔯 🛽	Sea Update Plugins		
Control Panel	<u>F</u>	AligningNemo Network		
 VizMapper™ 	Editor Filters	GOlorize	NICZ.IT – Università degli S	Studi
Current Visual Style		CytoMCL Network Analysis	Ciao Pietro, Massim	00:26
Network_NodeCo	olor_B 🗘 🙀 🗸	Network Modifications	gio. Ilaria Mauro Ilaria	17 ott
		NeMo 🕨 🔽	post in bacheca. Raff	17 ott
Defaults		CentiScaPe1.2	lata schema for diagn	17 ott
		Start BiNGO 2.42	tobre 2010	17 ott
\$ource			D2010	17 ott
	Target		cpedia.it HOME OFFE	17 ott
			10% GUIDA ALL'EUI	17 ott
Visual Mapping Bro	wser		n cui dici cosa 🥒	17 ott
₫↓ 📳 💷			i Privalia Presenta Se	17 ott
			: BioMed Central <info< td=""><td>17 ott</td></info<>	17 ott
Vode Visual Map	(]		are purtroppo posto del classico ma	16 ott
Node Color	BetweennessCentrality		connected. Olgert De	16 ott 16 ott
Node Label	ID		LCOLO SEMPLIFICA	16 ott
Unused Properties			itto: > in	16 ott
Edge Color	Double-Click to crea	Data Panel	Cacebook Twitter RSS	16 ott
Edge Font Face	Double-Click to crea		cribe or unsubscribe v	16 ott
Edge Font Size	Double-Click to crea		D2	16 ott
Edge Label	Double-Click to crea	ID EntrezGene ID Pathway GeneRIF SGD symbol annotation.GO BIOLOGICAL_PROCES	s a con il	16 ott
Edge Label Color	Double-Click to crea		val d'Autunno, il cui D 🥒	16 ott
Edge Label Opacity	Double-Click to crea		uparmi anche di dati i	16 ott
Edge Label Width	Double-Click to crea		comment on with the f	16 ott
Edge Line Style	Double-Click to crea		alert The following ner	16 ott
Edge Line Width	Double-Click to crea		The following new art	16 ott
Edge Opacity	Double-Click to crea		Ø	15 ott
	Double-Click to crea		a commentato lo stat	15 ott
- ge source anow e		Node Attribute Browser Edge Attribute Browser Network Attribute Browser	lavoro svolto in merito	15 ott
elcome to Cytoscap	e 2.7.0 Right-click	drag to ZOOM Middle-click + drag to PAN	acebook Ciao Pietro,	15 ott
ereo e y coscup	e znie night ellek	and to zoom model click i drug to this	io de Par	

cannataro@unicz.it

Cytoscape	File Operation H	elp	-	-	v 🖪 🕙 🕴 🤶	🕈 🜒 💽 (Caricata)	un 15.	33 Q
000		Cytoscape Desktop (Se		ty.cys)				
	Ð, Q, Q, 🔯	Search:	- ■			-		
Control Panel		Ei 🔴 🔿 🔿		Network				
✓ VizMapper [™]	Editor Filte					NICZ.IT - Università de	gli Studi	i +
Current Visual Style						: Ciao Pietro, Massim		00:26
Network_NodeC	olor_B 🗘 🙀	\varTheta 🔿 🔿 Cyto	MCL 1.1			gio. Ilaria Mauro Ilaria		17 ott
		T				post in bacheca. Raff		17 ott
Defaults						lata schema for diagn		17 ott
		Compute Imp				tobre 2010		17 ott
\$ource		MCL Parameters		Subnet		2010		17 ott
	Targ	Inflation:	Scheme:	✓ 1		cpedia.it HOME OFFE		17 ott
		2.0 Advanced opt	tion 1 💌	2	V10	. 10% GUIDA ALL'EUI		17 ott
-Visual Mapping Bro	wser					n cui dici cosa	Ø	17 ott
2↓ 📰 🗉		Input network:	Subnet output:			ıi Privalia Presenta S∉		17 ott
			ID			: BioMed Central <info< td=""><td></td><td>17 ott</td></info<>		17 ott
Node Visual Map.		node0 (DefaultEdge) node5	node0			are purtroppo		16 ott
Node Color	BetweennessCentrality		node5			posto del classico ma		16 ott
Node Label	ID	node5 (DefaultEdge) node1 node3 (DirectedEdge) node5	node2 node1			connected. Olgert De		16 ott
 Unused Properties 	5	node9 (DefaultEdge) node8	node3			LCOLO SEMPLIFICA		16 ott
Edge Color		node6 (DirectedEdge) node7 node1 (DefaultEdge) node0	node6 node7			itto: > in	Ø	16 ott
Edge Font Face		node5 (DirectedEdge) node7	node4		50			16 ott
Edge Font Size		node3 (DirectedEdge) node6 node2 (DirectedEdge) node6				cribe or unsubscribe v	<i>A</i>	16 ott
Edge Label		node4 (DefaultEdge) node6				p2	()/	16 ott
		node8 (DefaultEdge) node10			mbol annotation.GO BIOLOGICAL_PROCESS	a con il	<i>A</i>	16 ott
Edge Label Color		node6 (DefaultEdge) node9 node2 (DirectedEdge) node3				val d'Autunno, il cui D	()/	16 ott
Edge Label Opacity		node3 (DirectedEdge) node7				uparmi anche di dati i		16 ott
Edge Label Width		node2 (DirectedEdge) node7 node5 (DirectedEdge) node6				comment on with the f		16 ott
Edge Line Style	D0 0 0 0					alert The following new		16 ott
Edge Line Width				À		The following new art	M	16 ott
Edge Opacity						a commentato lo stat	011	15 ott 15 ott
Edge Source Arrow C	Do Compute Imp					lavoro svolto in merito		15 ott 15 ott
	MCL Parameters		Subnet	tribute Browse	r Network Attribute Browser	acebook Ciao Pietro,		15 ott 15 ott
Welcome to Cytoscap	e 2.7 Inflation:	Scheme:		N				15 OL
,,		Advanced option				io de Pat OOO		

cannataro@unicz.it

Using CytoMCL results in Cytoscape

🗯 Cytoscape	File Operation Help				💻 🕙 🕴 奈 🔹 💽 (Carica
00		Cytoscape Desk	ktop (Session: graph_centrality.cys)		
🖻 🔲 🔍 🤅	Ð, Q, Q, 🔯 🎩	Search:	▼ ■		
ontrol Panel	5	000	Netwo	rk	
VizMapper™	Editor Filters	00	mcl_1- Inflation_20		NICZ.IT - Universit
Current Visual Style					CytoMCL 1.1
Network_NodeCo	olor_B 🗘 🙀 🗸				
	~		v0 v2		
Defaults				Compute Imp	
			$-X \perp$	MCL Parame Import subnet	in Cytoscape Subnet
Source	Target		v1 v4	Inflation:	Scheme: 1
\smile			\uparrow \backslash \uparrow	2.0 Advance	ced option 1
	^				
Visual Mapping Bro	wser		v3 v5	Input network:	Subnet output:
≜ ↓ 📰 💷			-	ID node0 (DefaultEdge) node5	ID node0
Node Visual Map	n			node0 (DefaultEdge) node5 node2 (DirectedEdge) node5	
Node Color	BetweennessCentrality			node5 (DefaultEdge) node1 node3 (DirectedEdge) node5	node2 node1
Node Label	ID			node9 (DefaultEdge) node8	node3
 Unused Properties 		N		node6 (DirectedEdge) node7 node1 (DefaultEdge) node0	7 node6 node7
Edge Color	Double-Click to crea	Data Panel	· ·	node5 (DirectedEdge) node7	node4
Edge Font Face	Double-Click to crea			node3 (DirectedEdge) node8 node2 (DirectedEdge) node8	
Edge Font Size	Double-Click to crea	🖽 🗋 🗑		node4 (DefaultEdge) node6	
Edge Label	Double-Click to crea	ID Entr	trezGene ID Pathway GeneRIF	SGD sy node8 (DefaultEdge) node10 node6 (DefaultEdge) node9	,
Edge Label Color	Double-Click to crea			node2 (DirectedEdge) node3 node3 (DirectedEdge) node3	
Edge Label Opacity	Double-Click to crea			node2 (DirectedEdge) node7	· 🔍
Edge Label Width	Double-Click to crea			node5 (DirectedEdge) node6	5 💌
Edge Line Style	Double-Click to crea				
Edge Line Width	Double-Click to crea				Done!
Edge Opacity	Double-Click to crea				
Edge Source Arrow C	Double-Click to crea 🝸	•)	
				Browser Network Attribute Brows	er OK
lcome to Cytoscap	5	+ drag to ZOOM	Middle-click + drag to PAN		1. 000

cannataro@unicz.it

Dubium sapientiae initium

CytoSeVis: Semantic Similarity-Based Visualization of PPI Networks

Mario Cannataro, Pietro Hiram Guzzi University "Magna Graecia" of Catanzaro, Italy <u>cannataro@unicz.it</u>

PINs Visualization

- PINs visualization tools should:
 - handle high-dimensional PINs
 - meet users' requests in terms of low response time, interactivity, ease of use

- support some form of graph analysis
- PINs visualization tools comprise:
 - Collections of **layout algorithm** (e.g. circular, tree, hierarchical, Force-directed);
 - Different graphical **rendering algorithms** (2D, 3D)
 - **Graph-analysis** and **annotation** (clustering, statistics)
- Main tools include Cytoscape and NAViGaTOR

Agapito et al. Visualization of protein interaction networks: problems and solutions, BMC Bioinformatics 2013

Pavlopoulos et al. BioData Mining, 2008 cannataro@unicz.it

Visualization in Cytoscape

- Layouts: Spring-Embedded, Circular, Grid, Force-Directed and Organic;
- Rendering: 2D
- Network analysis: basic statistical analysis:
 - through the plug-in manager it is possible to add external modules
- Cytoscape does not support full semantic similarity analysis
 - GOlorize provides class-guided network visualization (used with BINGO)
 - BINGO finds GO categories overrepresented in a selected part of the network

BIOLOGICAL ONTOLOGIES

Biological Knowledge is encoded into many Biological Ontologies

Semantic Similarities

- Biological entities and molecules are also associated with GO terms representing their functions, biological roles and localization.
- The association of GO terms and biological molecules is called **annotation process** and it may be performed manually under the supervision of an expert, or automatically.
- There exist currently 17 different annotation processes that are identified by an **evidence code**.
- The **set of annotations** is stored in different databases, such as *the Gene Ontology Annotation Database* (GOA)

Guzzi et al, Briefings in Bioinformatics, 2012 CGW 2017, Krakow, 24 October 2017

ANNOTATION PROCESS

Genes	Prote	eins	Annot	atio	ons	GO TERN	GO:0008152, GO:0004807, MS GO:0016853,
			1				GO:0003824
	Expe	rimental Evide	nce Codes	Comp	utational Ana	lysis Evidence Codes	
	EXP	Inferred from	n Experiment	ISS	Inferred from Structural Si	n Sequence or milarity	
	IDA	Inferred from	n Direct Assay	ISO	Inferred from	n Sequence Orthology	
	IPI	Inferred from	n Physical Interaction	ISA	Inferred from	n Sequence Alignment	
	IMP	Inferred from	n Mutant Phenotype	ISM	Inferred from	n Sequence Model	
	IGI	Inferred from	Genetic Interaction	IGC	Inferred from	n Genomic Context	
	IEP	Inferred from	n Expression Pattern	RCA	Inferred from Computation		
	Auth	or Statement	Evidence Codes	Curato	or Statement	Evidence Codes	
	TAS	Traceable Au	thor Statement	IC	Inferred by (Curator	
	NAS	Non-traceab	le Author Statement	ND	No biologica	l Data available	
	Auto	matically-assig	gned Evidence Codes	Obsol	ete Evidence	Codes	
	IEA	Inferred from Annotation	Electronic	NR	Not Recorde	d	have 04 Qatabaa 0047

Ontology-based analysis

- GO and GO annotations enable the use of a set of **analysis methodologies** that have been **defined for the ontologies**.
- There exists, in fact, a set of analysis methodologies of the terms of ontologies as well as of the annotated entities
- An important **tool for ontology-based analysis** is represented by the **pairwise semantic similarities measures (SSM).**
 - **SSM** are mathematical functions that quantify the similarities of two terms belonging to an ontology into a numerical value.
 - **SSM** are usually **defined for the comparison of two terms** but they can be easily extended to consider group of terms as input.

Semantic Similarity

- In computational biology, semantic similarity measures are generally based on Gene Ontology and are often used to compare both GO terms and gene products.
- There exist currently many available semantic similarity measures as listed in Pesquita et al. that can be categorized using different parameters on the basis of the steps they employ to determine the semantic value.

SEMANTIC SIMILARITIES

- Pairwise: Two Terms
- Groupwise: Set of terms, i.e. proteins annotated with a set of terms

TPI1 GO:0008152,GO:0004807,GO:0016853, GO:0003824

PGAM2 GO:0006096,GO:0008152,GO:0016853, GO:0003824,GO:0016868

MEASURE	METHOD
Resnik	Pairwise
ResnikGraSM	Pairwise
Lin	Pairwise
LinGraSM	Pairwise
JiangConrath	Pairwise
JiangConrathGraSM	Pairwise
Relevance	Pairwise
Карра	Groupwise
Cosine	Groupwise
SimGIC	Groupwise
CzekanowskiDice	Groupwise

cannataro@unicz.it

Cyto-SeVis

- CytoSeVis is a Cytoscape plugin that is able to visualize protein interaction networks in a semantic similarity space
- CytoSevis is based on an intuitive interface and is able to load a network from Cytoscape
- It loads the semantic similarities provided as separate files and visualizes resulting coloured network into Cytoscape workspace

CytoSeVis Availability

- CytoSeVis for Windows, Linux and Mac OSX platforms is available under GPL license.
- Download at Cytoscape web site: <u>http://cytoscape.org</u>
- Semantic similarities for yeast available at:<u>http://bioingegneria.unicz.it/~guzzi/ss</u>

Plugin name: CytoSeVis Description: Visualizing networks by semantic similarities Project website: http://bioingegneria.unicz.it/~guzzi License: click here Version: 1.0 Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7 Download Jar/zip: click here (20.8KB)	
Project website: http://bioingegneria.unicz.it/~guzzi License: click here Version: 1.0 Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Project website: http://bioingegneria.unicz.it/~guzzi License: click here Version: 1.0 Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
License: click here Version: 1.0 Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Reference: Pietro Hiram Guzzi Mario Cannataro - Data Management of Protein Interaction Networks (Wiley Series in Bioinformatics) 978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
978-0470770405 Release Date: 2012-02-06 Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	HardcoverI ISBN-13
Authors: Pietro Hiram Guzzi ,Unicz Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Francesco Tafuri ,Unicz Release notes: click here Verified to work in: 2.7	
Release notes: click here Verified to work in: 2.7	
Verified to work in: 2.7	
Download Jar/zip: click here (20.8KB)	
Funding for Cytoscape is provided by a federal grant from NIGMS Division of Biomedical Technology. Bioinformatics, and Computational Biology (

@2001-2012 Cytoscape Consortium

CytoSevis Operation

Once that a network has been loaded.

1. User has to select the CytoSeVis plugin and an initial node.

2. Then user has to select and load the similarity file

cannataro@unicz.it

Network		node1 node5
ſ	🛓 Apri	
	Cerca in:	📔 mainCytoscape 🔹 🍺 📂 🖽 📾
	Oggetti recenti	build dist nbproject src
	Desktop	file3.txt FileStampato.txt filestampato2.txt FileStampato3.txt
	Documenti	
ata Pane	Computer	Nome file: FileStampato3.txt Apri
		Tipo file: Text file (*.txt) CGW 2017, Krakow, 24 October 2017

CytoSeVis SS input file

SS input file is a NxN precomputed matrix containing SS among each couple of proteins

SS are calculated with csbl.go R package: http://csbi.ltdk.helsinki.fi/csbl.go/ (Ovaska et al, BioData Mining, 2008)

Available SS:

Cosine	
Czekanowski	FileStampato3.txt - Blocco note
CZEKANOWSKI	File Modifica Formato Visualizza ?
Dice	node0 NA 0.17 0.04 0.07 0.1 0.14 node1 0.17 NA 0.24 0.27 0.3 0.34 node2 0.04 0.24 NA 0.44 0.47 0.5 node3 0.07 0.27 0.44 NA 0.64 0.67
JiangConrath	node4 0.1 0.3 0.47 0.64 NA 0.84 node5 0.14 0.34 0.5 0.67 0.84 NA
Карра	
Lin	
LinGrasm	
Relevance	
Resnik	
Weighted	
Jaccard	the sense.
Resnik Grasm	

CytoSeVis Use

- Semantic similarities are translated into different colors.
 - The white node is the reference seed node.
 - All the other similarities are calculated with respect to this node.
- In the example, a darker color represents a lower similarity: CGW 2017, Krakow, 24 October 2017

- Semantic similarity adds a new dimension for PINs visualization and analysis
- CytoSeVis is a Cytoscape plugin for semantic similarity-based visualization of PINs
 - http://cytoscape.org
- Semantic similarities are available at:<u>http://bioingegneria.unicz.it/~guzzi/ss</u>
- See also:
 - Guzzi et al Briefings in Bioinformatics 2012,
 - Guzzi et al IEEE BIBMW 2011, ICIAP 2011

OUTLINE

- Experiences at University of Catanzaro in high performance management, preprocessing and analysis of omics data
 - PART I: Genomics data
 - PART II: Proteomics data
 - PART III: Interactomics data
- Conclusions

Dubium sapientiae initium

Conclusions: toward an integrated pipeline

- **DMET-Analyzer** supports the automatic statistical analysis in DMET-based pharmacogenomics data and it is able to find statistically relevant subsets of SNPs that separate two input classes
- **DMET-Miner** extracts Association Rules from DMET-based pharmacogenomics data
- **OSAnalyzer** analyzes genomics data annotated with clinical data and computes the OS and PFS curves related to the presence/absence of SNPs in the population under investigation

Acknowledgements

- University of Catanzaro Clinical and Biology Units
 - U.O. Oncologia Policlinico Universitario Mater Domini
 - Prof. Pierosandro Tagliaferri, Prof. Pierfrancesco Tassone, Dr.ssa Maria Teresa Di Martino
 - Laboratorio di Proteomica e Spettrometria di Massa dell'Università di Catanzaro
 - Prof. Giovanni Cuda, Dr. Marco Gaspari
 - U.O. Biochimica Clinica Policlinico Universitario Mater Domini
 - Prof. Francesco Saverio Costanzo, Dr.ssa Barbara Quaresima, Dr.ssa Concetta Faniello
- ICAR-CNR and University of Calabria
 - Prof. Domenico Talia
- Georgia Institute of Technology and University of Padova
 - Prof. Concettina Guerra
- University of Salerno
 - Prof. Alessandro Weisz
- Fondazione Bruno Kessler (Trento)
 - Dr. Cesare Furlanello
- University of Calabria
 - Prof. Sergio Greco

Bioinformatics Group www.bioingegneria.it/~cannataro

- > Prof. Mario Cannataro
- > Prof. Pierangelo Veltri
- > Prof. Pietro H. Guzzi

 \geq

Peter New York Life

Microarray

Data Analysis

- Dr. Calabrese Barbara, PhD, PostDoc;
- Dr. Giuseppe Tradigo, PhD, PostDoc;
- Dr. Vizza Patrizia, PhD, PostDoc;
- Ing. Cristiano Francesca, PhD Student;
- Ing. Milano Marianna, PhD Student;
- Ing. Mirarchi Domenico, PhD Student;
- Dr. Chiara Zucco, PhD Student;
 candango DictoroitCinaglia, PhD Student.

HANDBOOK OF RESEARCH ON

Computational Grid Technologies for Life Sciences, Biomedicine, and Healthcare

