Tensia

Actor-based tensor network simulation

Bartosz Błaszków¹, Mateusz Front¹, Katarzyna Rycerz¹, Piotr Gawron²

¹ AGH University of Science and Technology, Institute of Computer Science AGH, Department of Computer Science

² Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

- Introduction
- Tensors, tensor networks and contraction
- Choosing contraction order
- Parallel contraction in actor model
- Example

- Tool supporting analysis and operations on tensor networks
- $\cdot\,$ Written in Scala and C
- Utilizing Akka Actors for parallel computation

- Research usefulness of new tchnologies
- Tensor Networks are a convenient form of expressing problems from quantum physics and chemistry
 - · Simulation of continuous-time stochastic automata networks
 - Deep neural networks
 - Hyperspectral image analysis
 - Quantum circuit simulation

Notice

There are several approaches to the definition of tensor. This is just one of them (a bit simplified)

- Generalization of vector
- Representation: N-dimensional array
- Contains scalar components denoted by indices
- Number of dimensions is it's rank (also called degree or order)

Sum over all the possible values of the repeated indices of a set of tensors.

Example $C_{abe} = \sum_{cd} A_{abcd} \cdot B_{cde}$ Computational complexity $countOfMultiplications = \frac{size(A) \cdot size(B)}{\prod contractedDims(A, B)}$ Resulting size $size(C) = \frac{size(A) \cdot size(B)}{\prod contractedDims(A, B)^2}$

Tensor Network

- \cdot A set of tensors where some of its indices are contracted
- Represented by diagrams
- Problem: reduce to a single tensor

Figure 1: Tensor on Tensor Network diagram

Tensor Network

- \cdot A set of tensors where some of its indices are contracted
- Represented by diagrams
- Problem: reduce to a single tensor

Figure 2: Contraction shown on Tensor Network diagram

Tensor Network

- \cdot A set of tensors where some of its indices are contracted
- Represented by diagrams
- Problem: reduce to a single tensor

Figure 3: An example of Tensor Network

Simulation flow

Figure 4: Simulation: choosing order of contraction

Figure 5: Simulation: constructing computation tree

Figure 6: Simulation: reduction to the resulting tensor

Contraction order

Why it's important?

Figure 7: Different ways of contracting tensor network

- Lowest-cost contraction order problem is NP-hard :(
- Currently using brute-force $O(4^n)$ algorithm
- \cdot Working on speeding it up

Actor model

- Model of concurrent computation
- Everything is an actor
- Asynchronous message passing

Figure 8: Actor model

Parallel computation

- \cdot Use of Akka actors
- Supervision tree

- Use of ND4J library
- Reshaping tensors to matrices
- Performing BLAS matrix multiplication
- Reshaping result back to proper dimensions

Example

Figure 9: Simple quantum circuit

$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

 $C_{10} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Figure 10: Hadamard gate matrix

Figure 11: Cnot gate matrix

Example

Figure 12: Circuit as a tensor network

Thank you for your attention

github.com/tensia/tensia

This research was partialy funded by Narodowe Centrum Nauki—project number: 2014/15/B/ST6/05204