
Evaluation of container
composition tools for
multi-container distributed
systems
Michał Orzechowski

CGW Workshops 2016
Kraków, 26.10.2016

Agenda

1. Distributed System and Microservices
2. Example Distributed System
3. Container Orchestration Frameworks
4. Container Composition Description
5. Examples of service stacks descriptions
6. Container Composition Description Comparison
7. Limitations of Composition Description
8. Future work

Distributed Systems and Microservices

• microservices are production proven alternative
to SOA

• promote good practices of well designed
distributed systems

• work well at scale eg. moderately complex web
shop can easily constitute of 450 microservices

• good fit for virtual machine and container
deployments

Example distributed system build from
microservices

Simple Local Architecture Example

Simple Scaled Architecture Example

Large Scaled Architecture Example

How to deploy and manage it at scale?

Container Orchestration Frameworks

• Cattle (part of Racher)
• Docker Swarm
• Kubernetes
• Marathon (part of Mesos)
• Fleet (part of CoreOS)

Container Composition Description

Stack files defined with:
• Docker Compose
• Rancher Compose
• Kubernetes Objects (Pods, Services…)
• Crowdr (orchestration on single node, but using

script)

Docker Compose and Kubernetes

frontend:
 image: java:8-jre
 links:
 - person
 ports:
 - "8081:8081"
 volumes:
 - docker/volume-frontend:/frontend
 - docker/volume-log:/log
 command: "run_frontend.sh"

person:
 image: java:8-jre
 links:
 - authorisation
 ports:
 - "8085:8085"
 volumes:
 - docker/volume-person:/person
 - docker/volume-log:/log
 command: "run_person.sh"

kind: Pod
apiVersion: v1beta1
id: person-mysql
desiredState:
 manifest:
 version: v1beta1
 id: mysql
 containers:
 - name: person-mysql
 image: mysql
 cpu: 100
 ports:
 - containerPort: 3306
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 source:
 persistentDisk:
 pdName: replicated-person-mysql-disk
 fsType: ext4

frontend:
 image: java:8-jre
 links:
 - person
 ports:
 - "8081:8081"
 volumes:
 - docker/volume-frontend:/frontend
 - docker/volume-log:/log
 command: "run_frontend.sh"
 scale: 2
 load_balancer_config:
 haproxy_config: {}
 health_check:
 port: 42
 interval: 2000
 unhealthy_threshold: 3
 healthy_threshold: 2
 response_timeout: 2000

#!/bin/bash

crowdr_project="example"

frontend
frontend image mysql:5.7.10
frontend before.run create_network
frontend net overlay
frontend volume volume-frontend:/var/lib/mysql

person
person image wordpress:4.3.1
person net overlay
person volume person-frontend:/var/lib/mysql
person publish 8085:8085

Racher Compose and Crowdr

Container Composition Description
Comparison

Docker Compose Racher Compose Kubernetes

Types of Workloads Cloud Native applications Cloud Native applications Cloud Native applications

Application Definition
Kubernetes Objects (Pods,

Services, Controllers)
YAML, JSON

docker-compose.yml
(services, volumes,

networks) YAML

racher-compose.yml
(services, volumes,

networks) YAML

Application
Scalability constructs

Manual or automated
scaling of Pods

Manual scaling of individual
services

Manual scaling of individual
services

Logging and
monitoring Liveness, readiness Liveness Liveness, readiness

Distributed Storage Storage backends (e.g. NFS,
AWS EBS)

Single host volumes,
extendable with Flocker

Single host volumes,
extendable with Flocker

Standard Release Process Model

1. Development and local testing
2. Compile and fast tests
3. Slow tests
4. User Acceptance Testing
5. Performance testing
6. Production

A need to tailor service composition to environment
and configuration.

Limitations of Composition Description

• limited static syntax (YAML, JSON)
• cannot mix multiple stack files
• cannot inherit from a individual service
• cannot inherit from a base stack file
• cannot respond to changes in configuration or

environment
• no information about version constraints
• no notion of horizontal scaling or performance

constraints

Maven vs. Gradle

Future work

• Further evaluation of quickly number of
container related tools

• Comparison of presented composition tools with
model-driven approaches eg. CAMEL or TOSCA

• Development of service stack syntax using a
script based, statically typed dynamic language
(eg. TypeJs) with support for Docker Engine

• Development of

Thank you!

Michał Orzechowski
PhD Student, Department of Computer Science
AGH University of Science and Technology

