

Analysis of annual temperature distribution inside the experimental embankment

Barbara Bukowska-Belniak, Maciej Dwornik and Andrzej Leśniak

Department of Geoinformatics and Applied Computer Science, Faculty of Geology, Geophysics and Environmental Protection, UST AGH, Krakow

IKADEMIA GÓRNICZO-HUTNICZA M. Stanisława Staszica V Krakowie INFORMATYKA

PLAN OF PRESENTATION

- Construction of embankment
- Location of reference temperature point sensors in cross-sections
- Plots of measured temperatures in last year (10th August 2015 – 22nd Sepember 2016)
- Conclusions and future work

Construction of embankment

- ~200m long and ~50m width
- 5 different types of soil materials
- western levee is symmetric, eastern levee is asymmetric
- 3 cross-sections with 39 reference point sensors
- weather station

I A P

 UT_T_01
 UT_T_02
 UT_T_03
 UT_T_04
 UT_T_05
 UT_T_07
 UT_T_08
 UT_T_09
 UT_T_11
 UT_T_12
 UT_T_13
 UT_T_14

 UT_T_15
 UT_T_16
 UT_T_17
 UT_T_18
 UT_T_19
 UT_T_20
 UT_T_21
 UT_T_22
 UT_T_24
 UT_T_25
 UT_T_26
 UT_T_27
 UT_T_28

 UT_T_29
 UT_T_30
 UT_T_31
 UT_T_33
 UT_T_34
 TZ
 SV_T_01
 SV_T_03
 SV_T_04
 SV_T_05
 SV_T_06

L M P

CE cross-section

CW cross-section

I M P

Sensivity and shift in phase

Conclusions

- The temperatures curves are shifted in phase due to the ambient temperature.
- Minimum and maximum temperatures for each sensor are achieved in different moments of time and they differ from each other even by several months.
- In September and April temperatures observed by sensors were similar.
- For each period of time, a simplified model of the initial parameters based on historical and current temperature can be prepared for a numerical modelling purposes.

Future work

- Using the presented analysis, it will be possible to prepare the numerical model for the initial temperature of the experiment performed in a given period of the year.
- Preparation of flooding experiments on embankment during the hot spring when a high temperature differences occurring can lead to increased heat flow inside the embankment

Other posters of our team

- Optimal numerical models selection for flood embankment pore pressure data
 M. Chuchro, M. Dwornik, K. Szostek, A. Leśniak
- Anomalies detection in real data from experimental flood embankment
 M. Chuchro, K. Szostek, A. Leśniak
- Influence of initial water saturation in earthen levee on results of numerical modelling of infiltration process
 M. Dwornik, A. Franczyk, A. Leśniak, K. Krawiec

http://www.ismop.edu.pl

SWECO

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

INFORMATYKA

Acknowledgements

This work was partially supported by the National Centre for Research and Development (NCBiR) under Grant No. PBS1/B9/18/2013 and by the AGH grant no. 11.11.140.613

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

The National Centre for Research and Development