
Model based Cloud Programming

Stefan Wesner, Lutz Schubert

Höchstleistungsrechenzentrum Stuttgart,
Universität Stuttgart, Nobelstrasse 19, 70569 Stuttgart, Germany

emails: {wesner,schubert}@hlrs.de

Keywords: future clouds, cloud computing, programming model, execution environment

1. Introduction
Cloud computing has gained significant popularity not only for research and industrial

use but similarly for private users. However the concept is already over-hyped. The promise
of infinitely scalable elastic resources changing without complex systems administration and
paying only for resources used cannot be realised immediately without coping with a certain
level of complexity. Key question is how (and if at all) within organisations the obvious
benefits of the cloud approach are realisable at considerable cost. For example IaaS
(Infrastructure as a Service) public clouds have different interfaces and conditions of use
thus for an organisation to ‘scale out’ requires considerable investment using skilled
technical staff.

Allowing organisations to ‘scale out’ from their private cloud to public clouds is still a
considerable technical challenge in particular if the solution should not be bound to a certain
vendor or solution. Consequently there is a need for an open and integrated platform, to
support both deployment and design of Cloud applications, together with an accompanying
methodology that allows model-based development, configuration, optimisation, and
deployment of existing and new applications independently of the existing underlying Cloud
infrastructures.

2. Description of a problem solution

Within the recently started large scale European research project PaaSage such an open
platform consisting of three main parts (1) An integrated development environment (IDE)
based on Eclipse extended to allow expression of Cloud applications using a Cloud
Modelling Language (CloudML) (2) the “executionware” as the intermediary layer
exploiting the hints and semantics within the CloudML enabled application for mapping
them on the execution infrastructure of different cloud providers. Part of this matching
process is also the selection of the appropriate execution resources as not all execution
layers come with all the necessary capabilities or monitoring hooks to serve all type of
functions. The application development as well as the execution/mapping is supported by
the third part, the “upperware”. The “upperware” is a collection of tools and components
supporting application designer and developers as well as cloud operators in their respective
roles within the PaaSage platform.

Code
Object

Code
Object

Code
Object

2. Generate
and Distribute

Code

Source
Code

if (test(arr[n])
 {
 b=fct(n);
 arr[n]=b*sum(
 eps=pol(b);
 }
} while (eps>thres

1. Analyse and
Annotate

Code

experience expert system

Structured
Code

#replicate(%u)
 if (test(arr[n]
 {
 b=fct(n);
 #consistent(a
 arr[n]=b*sum(
 eps=pol(b);
 }

3. Deploy and
Execute

Code own cloud

Behaviour
Description

be
ha

vi
ou

r
w

ra
pp

er

4.
 F

ee
d

B
ac

k
P

er
fo

rm
an

ce
 V

al
ue

s

(if
 e

xi
st

en
t)

Fig. 1. Anticipated Cloud Programming Principle.

As shown in Fig. 1 above, the overall idea is to decouple the design and programming
of the cloud application from the concrete underlying technological infrastructure or
technology. This is achieved by allowing the application developer to express in a meta-
model the architecture of the application and annotate the source code with hints and
semantics using a Cloud modelling language (Cloud ML). The modelling language must not
be understood as a semantically enriched workflow language but aims to provide enough
information for a speculative profiler to derive at development time data dependencies,
communication patterns, computing complexities and other characteristics of the functional
units of the application and their interrelations. As the matching process has potentially a
large number of feasible stable solutions there must be a possibility to work with
uncertainty. Within PaaSage an intelligent stochastic reasoned deriving the options and
provide a rating/ranking of them is needed. As the quality of such a process heavily depends
on the collected historical data the reasoned will have to learn from each performance
assessment for a chosen configuration and must apply stepwise optimizations.

While such an approach would allow already a post-execution optimization for future
execution of similar applications it is not appropriate for long running applications. In order
to allow also optimization steps during the execution a functional adaptation engine
maintaining a causal link between behaviour of the underlying infrastructure and key
performance indicators of the application is part of the anticipated platform.

In order to realise such functionality a highly scalable and effective information
collection framework bringing together current information from the infrastructure as well
as capabilities to store and analyse historical data is essential.

3. Results
The proposed platform in PaaSage is partially based on the Future and Emerging

Technology Project S(o)OS where initial programming model for heterogeneous computing
devices, speculative mapping and execution runtime on local and rather homogeneous
resources could be already validated.

References
1. M. Assel, L. Schubert, D. Rubio Bonilla, and S. Wesner. Beyond Clouds: Towards Real Utility

Computing. Scalable Computing: Practice and Experience, vol. 12, no. 2, pp. 179–191. SCPE,
2011.

2. L. Schubert, A. Kipp, and S. Wesner. Above the Clouds: From Grids to Service- oriented
Operating Systems. Towards the Future Internet - A European Research Perspective, pp. 238 –
249. Amsterdam: IOS Press, 2009, pp. 238 – 249.

