
System Software for Petascale and Beyond

Kamil Iskra
Mathematics and Computer Science Division
iskra@mcs.anl.gov

2

Today’s Petascale Platforms

3

Today’s Petascale Platforms

4

Systems are Changing...

 New Constraints:
– Transistors still scale
– Clock leveled off (2–4 GHz)
– Power leveled off (100–200

W)
– ILP leveled off (2–4

ops/cycle)

 15 years of exponential clock
rate growth has ended

 Moore’s Law reinterpreted:
– Parallelism doubles every 18

months (cores or threads)

Figure courtesy of Kunle Olukotun, Lance Hammond,
Herb Sutter, and Burton Smith

5

Key Challenges

 OS kernel
 I/O infrastructure
 Parallel programming infrastructure
 Performance analysis
 Fault tolerance
 Resource management

Two main approaches towards solving them:
 Scale an existing general-purpose solution

– familiar to future users of the system

 Develop something from scratch
– domain-specific, complete control

6

RADIX Laboratory for Scalable System Software

 OS kernel: ZeptoOS
 I/O infrastructure: PVFS2, ROMIO, IOFSL, Darshan
 Parallel programming infrastructure: MPICH2
 Performance analysis: Jumpshot, Jupiter
 Fault tolerance: CIFTS
 Resource management: Cobalt, SPRUCE

 Part of Argonne's Mathematics and Computer Science Division
– ~15 staff
– ~5 postdocs
– ~15 students during the summer

7

OS Kernel

8

Lightweight OS Kernels

 IBM Blue Gene: CNK
– cycle-reproducible
– lean (can be run under the cycle simulator)
– no virtual memory
– no preemption, max. 4 threads/node
– no fork/exec

 Cray XT3: Catamount
– (similar limitations)
– basically abandoned by now; new XTs come with Compute Node Linux

 Kitten
– new open source kernel from Sandia

9

Linux on Compute Nodes

 Why do it?
– features (threads, multitasking, shell scripts, Java, Python)
– user familiarity in HPC environments
– code portability
– research platform
– leverage large community of independent developers

 Key challenges:
– jitter/noise
– paged memory overhead
– support for high-speed networks

http://www.zeptoos.org/

10

OS Jitter

 Device interrupts
 Clocktick
 Preemptive scheduling

11

OS Jitter: At Scale

P0

P1

P2

P3

Pn

 Random detours on individual nodes delay all other nodes participating in
collective operations

12

OS Jitter: Research Results

 Large-scale noise injection experiments:
– longest detours most detrimental
– short but frequent ones not really a problem
– synchronizing detours across nodes eliminates the OS jitter problem

 Medium-scale experiments with Linux on BG/P:
– OS jitter does not impede scalability
– even on a vanilla kernel

 Future:
– mainline developments in the area of tickless kernel

13

CNK Linux

0

5

10

15

20

25

30

35

40

45

50

Memory benchmark

random access (read-only)
M

B
/s

CNK Linux Linux 64K

0

5

10

15

20

25

30

35

40

45

50

Memory benchmark

random access (read-only)
M

B
/s

CNK Linux Linux 64K Linux Big Mem

0

5

10

15

20

25

30

35

40

45

50

Memory benchmark

random access (read-only)
M

B
/s

Memory Management

 Paged memory up to 6x slower than a static mapping
 Caused by a high cost of TLB misses on PPC450 CPUs

14

Memory Management: Big Memory

 Allocated at boot time
 Covered by large, semi-static TLBs
 Simple physical to virtual address mapping

Kernel

Shared mmap

Shared mmapShared mmap

Shared mmap

VMA

Big Memory
Region

PTE

TLBs
Memory Allocator

Pin down
for compute process

Update by
TLB handler

15

Memory Management: Research Results

 Big Memory closes the performance gap
 This is not just a Blue Gene issue

– A big memory job can get a 40-50% performance improvement if it is the very
first job [after reboot, on mainstream hardware] — Don Becker, Penguin
Computing

 Future:
– short-term trends in CPUs: more flexibility (MMU in next generation BG, 1 GB

pages in AMD “Barcelona”)

16

High Speed Networks

 Blue Gene has a high-speed 3D torus network between the compute
nodes, with a DMA engine.

 The DMA engine lacks scatter/gather support required for paged memory.
 Big Memory resolves this problem by providing a physically contiguous

memory region.

17

I/O

18

Compute and Storage Imbalance

A supercomputer is a device for turning compute-bound problems into I/O-
bound problems — Seymour Cray/Ken Batcher

Current leadership-class machines supply only 1 GB/s of storage throughput
for every 10 TF of compute performance. This gap has grown by a factor of
10 in recent years.

Argonne's 557 TF Blue Gene/P (Intrepid):
 20% of the budget spent on I/O
 Full memory dump takes over 30 minutes

– How long does it take on your laptop?

19

(Sad) State of the Art...

 Typical HPC file system is a scaled up version of an enterprise product
– Very expensive at this scale

• Big network switch needed

– Unsuitable API
• Who needs POSIX locks?

 Example problems:
– Parallel mkdir takes 10 minutes!

• GPFS with 640 clients gives 1 mkdir/s!

– Unaligned writes orders of magnitude slower
• Check out the PLFS work (LANL/CMU/PSC)

– Have you ever done “svn update” of a large repo on GPFS?

 Parallel filesystem stability/performance possibly the largest problem on
contemporary large-scale systems.

20

Software Complexity

21

[Part of the] Solution: I/O Forwarding

 I/O Forwarding is an additional I/O software layer for leadership-class
machines that bridges the gap between application process and file
systems. It reduces the number of clients seen by the file system for all
applications, even without collective I/O.

22

I/O Forwarding on Blue Gene

 POSIX-only
 No aggregation, no caching
 Not extensible

23

ZOID: Low-Level Function Shipping Infrastructure

compute nodes

I/O nodes

libzoid_cn

UNIX

ADIO

ZOID daemon

collective

ZOIDFS
IP
fwd

Job
mgmt

libc FUSE

syscalls

UNIX ZOIDFS IP
fwd

Job
mgmtPVFSUNIX

24

The IOFSL Project

Design, build, and distribute a scalable, unified high-end computing I/O
forwarding software layer that would be adopted and supported by DOE
Office of Science and NNSA.

 Reduce the number of file system operations/clients that the parallel file
system sees

 Provide function shipping at the file system interface level
 Offload file system functions from simple or full OS client processes to a

variety of targets
 Support multiple parallel file system solutions and networks
 Integrate with MPI-IO and any hardware features designed to support

efficient parallel I/O

http://www.iofsl.org/

25

ZOIDFS Protocol

 Opaque handles used to reference files
– Portable across nodes

 Flexible read and write operations
– Vectors of memory buffers and file regions

 Minimizes state to improve scalability
 Reduces the number of I/O operations
 Enables middleware optimizations
 Example call:
 int zoidfs_read(const zoidfs_handle_t *handle,

zoidfs_size_t mem_count,

void *mem_starts[],

const zoidfs_size_t mem_sizes[],

zoidfs_size_t file_count,

const zoidfs_ofs_t file_starts[],

zoidfs_size_t file_sizes[]);

26

IOFSL: Performance Optimizations

 Reduced number of metadata operations
– Lookup a handle from one process, broadcast to others via MPI

 Reduced number of file data operations
– Complex datatypes can be handled with a single call

 Pipelining
– Large I/O operations exposed to the forwarding server
– Simultaneous transfer of data between CN-ION and ION-FS

 Aggregation
– Reduce the number of requests

 Caching of file data and metadata

27

Results

28

ZeptoOS Matches the Performance of CNK...

 NAS Parallel Benchmarks (class C / 1024 nodes)
CNK (Mop/s) Zepto (Mop/s) Zepto/CNK

IS 3990.92 4009.76 1.005
CG 15749.35 15706.83 0.997
MG 134955.02 134380.19 0.996
FT 96594.32 96385.49 0.998
LU 40889.58 40616.70 0.993
EP 2503.11 2499.84 0.999
SP 106009.42 105708.94 0.997
BT 165240.30 164777.07 0.997

 NAS Parallel Benchmarks FT (class D)
CNK (Mop/s) Zepto (Mop/s) Zepto/CNK

1024 217666.44 216916.86 0.997
4096 371444.68 372516.63 1.003
8192 768919.56 768431.17 0.999

29

… And Sometimes Exceeds It

 Parallel Ocean Program

CNK (s) Zepto (s) CNK/Zepto
64 196.62 197.26 0.997

128 105.69 105.59 1.001
256 57.37 57 1.006
512 34.98 34.49 1.014

1024 22.37 21.89 1.022
2048 16.74 16.32 1.026
4096 14.54 14.10 1.031

 Caused by gettimeofday() being 7x more expensive under CNK

30

LOFAR

LOw Frequency Array

 revolutionary radio telescope
– no dishes
– O(10000) receivers
– omni-directional

 central processing
– real time
– software
– BG/P supercomputer

31

LOFAR BG/L Processing with ZOID

 reorder, filter, correlate data
 use ZOID plug-in on I/O node

 application on I/O node: no need for input cluster

32

Falkon: Managing 160,000 CPUs

Slower
shared
storage

High-speed local disk

Falkon

33

 GPFS
– 1 script (~5KB)
– 2 file read (~10KB)
– 1 file write (~10KB)

 RAM (cached from GPFS on first task per node)
– 1 binary (~7MB)
– static input data (~45MB)

DOCK on BG/P: ~1M Tasks on 118,000 CPUs

 CPU cores: 118784
 Tasks: 934803
 Elapsed time: 7257 sec
 Compute time: 21.43 CPU years
 Average task time: 667 sec
 Relative Efficiency: 99.7%

– (from 16 to 32 racks)
 Utilization:

– Sustained: 99.6%
– Overall: 78.3%

Time (secs)

34

Other Issues

35

Fault tolerance: CIFTS

Coordinated Infrastructure for Fault Tolerant Systems

 Traditional fault tolerance is handled by individual components
 No coordination between them
 No sharing of fault information
 Components don't know the reason for system-wide faults

– Did the application exit due to an inherent error in the code?
– Did it exit due to a system failure?

http://www.mcs.anl.gov/research/cifts/

36

CIFTS

 Fault Tolerance Backplane:
– Provides a scalable framework to exchange fault-related information
– Exposes a standard interface that can be used by any component
– Provides a uniform event handling and notification mechanism

Fault Tolerance
Backplane

Linear
Algebra
Libraries

HPC
Middleware

Universal
Loggers

Automatic
Actions

Diagnostics
Tools

Event
Analysis

Job
Scheduler/
Resource
manager

File
Systems

Check-
Pointing
Software

Networking
libraries

System
Monitoring
Software

System
Mgmt.

Hardware

Operating
System Applications

Advanced
Systems

(Crays, BGs)

37

Performance Analysis: Jupiter

Visual Characterization of I/O System Behavior for High-End Computing

 Plenty of research on application performance analysis and debugging
tools

 The needs of system software developers often overlooked
– a high-scale parallel filesystem is a complex parallel application

 Develop/improve/deploy:
– end-to-end, scalable tracing integrated into the I/O system (MPI-IO, I/O

forwarding, file systems),
– new visual representations and analysis techniques for inspecting traces and

extracting knowledge, scalable to very large systems and integrable with
existing techniques

38

Jupiter

39

Conclusion

40

What’s Next?

Source: Jack Dongarra, ISC 2008

41

The Big Questions

 Extreme-scale operating systems will be even more challenging on
emerging next-generation hardware

– Large multi-core
– Heterogeneous cores
– Hierarchical

 What should the OS stack look like?
– virtualization/partitioning?

• For example: should we partition OS services to n–1th core?

– I/O forwarding inside each compute node?

42

Could We Get Rid of Enterprise Storage in HPC?

 What if we collapse I/O forwarding nodes and file server nodes?

 What is the difference?
– no external network switch
– high-speed HPC network used instead

43

Collaborators

 RADIX: Kazutomo Yoshii, Harish Naik, Pete Beckman, Dries Kimpe, Jason Cope, Rob
Ross, Phil Carns, Sam Lang, Rob Latham, Rinku Gupta, Rusty Lusk

 Project partners:
– University of Oregon: Allen Malony, Sameer Shende, Aroon Nataraj, Alan Morris
– Los Alamos: James Nunez, John Bent, Gary Grider, Sean Blanchard, Latchesar

Ionkov, Hugh Greenberg
– Oak Ridge: Steve Poole, Terry Jones
– Sandia: Lee Ward
– UC Davis: Kwan-Liu Ma, Chris Muelder

 External collaborators:
– ASTRON (Netherlands Institute for Radio Astronomy): John W. Romein, P. Chris

Broekema
– University of Chicago: Michael Wilde, Zhao Zhang, Ioan Raicu, Allan Espinoza
– University of Delaware: Guang R. Gao, Handong Ye

 Summer students: Nawab Ali, Ivan Beschastnikh, Peter Boonstoppel, Hajime Fujita,
Valerie Galluzzi, Jason Kotenko, Alex Nagelberg, Kazuki Ohta, Satya Popuri, Taku
Shimosawa, Zichen Xu, Kazunori Yamamoto

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	DOCK on BG/P: ~1M Tasks on 118,000 CPUs
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

