A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino,^a A Monari,^b S Evangelisti,^c E Rossi,^d G L Bendazzoli,^b A Laganà,^a

^aDipartimento di Chimica, Università degli Studi di Perugia, Italia ^bDipartimento di Chimica Fisica e Inorganica, Università di Bologna, Italia ^cLaboratoire de Chemie et de Physique Quantiques, Université Paul Sabatier Toulouse III, France ^dCINECA, Bologna, Italia

Kraków – October, 2009

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

- 2 Elementary exchange reactions
- gGEMS: the workflow
- 4 A prototype reaction: $H + H_2$

5 Perspectives

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

1 Introduction

- 2 Elementary exchange reactions
- 3 qGEMS: the workflow
- 4 A prototype reaction: $H + H_2$

6 Perspectives

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

Modeling chemistry

Simulating processes on a molecular basis

- modeling natural phenomena
- designing new materials
- mastering new technologies

... requires

- assembling various pieces of software
- converging different competences
- a world spread virtual laboratory

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

... on the Grid:

A self-introducing picture

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction Modeling chemistry ... on the Grid: towards GEMS

A + BC reactions The quantum view

Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

 $H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Grid Enabled Molecular Simulator

GEMS is

A grid based realistic simulator that can act as a molecular science engine in complex multiscale chemical contexts.

The recipe

- software: a suite of codes
- interoperability: standards and tools
- a director: workflow management
- a factory: Grid, the modern paradigm of HTC

Let's start with a few atoms...

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Introduction

gGEMS: the workflow

4) A prototype reaction: $H + H_2$

6 Perspectives

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

The quantum view

A reactive collision

The B-O "equation of motion"

$$i\hbar \frac{\partial \psi(\mathbf{w},t)}{\partial t} = \left[\hat{T}_{\mathbf{w}} + \mathbf{V}(\mathbf{w})\right] \psi(\mathbf{w},t)$$

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS....

Acknowledgments

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Solution methods

If $\hat{H} \neq f(t)$, then either (TD methods) $\psi(\mathbf{w}, t + \tau) = e^{-\frac{i\hat{H}\tau}{\hbar}}\psi(\mathbf{w}, t)$

Or simply (TI methods)

$$\hat{H}\psi(\mathbf{w}) = E\psi(\mathbf{w})$$

From an analysis on ψ

The detailed scattering matrix elements $S^{J}_{cv'j'k',avjk}(E)$

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Quantities of interest

From the state to state \mathbf{S} elements

- detailed reaction probabilities
- state to state differential cross sections
- integral cross sections

Further elaborating...

- branching ratios
- product internal energy distributions
- microscopic branching
- reaction rates

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Introduction

2 Elementary exchange reactions

3 qGEMS: the workflow

4) A prototype reaction: $H + H_2$

6 Perspectives

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

Overview

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview

The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

The Interaction module

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview

The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Interoperability in Quantum Chemistry

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

A bridge to Dynamics

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

The Dynamics module

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

Introduction

- 2 Elementary exchange reactions
- gGEMS: the workflow
- 4 A prototype reaction: $H + H_2$

6 Perspectives

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS....

Acknowledgments

References

Computing details

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Computing details

イロト 不得 トイヨト イヨト -

ABC: a comment on the distribution

Execution time

almost linear with number of E's per run:

• 1000 E's 1 run, local machine: 21 m

Though,

the "Grid overhead" is umpredictable...

Grouping E's

a compromise between speedup and employed resources:

• 100 E's per run, 10 CEs, 2 casts: 4 m

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Introduction

- 2 Elementary exchange reactions
- gGEMS: the workflow
- 4 A prototype reaction: H + H₂

5 Perspectives

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives

Building GEMS...

Acknowledgments

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Building GEMS...

Scientific software

port to the Grid, integrate in GEMS

Vertical interoperability

between classes of codes from different domains

Workflow management

a bash script, at present...

User friendly interface

buttons, menus, visualization tools

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

◆□> ◆□> ◆三> ◆三> ・三 ・ つへぐ

Acknowledgments

EGEE III

• Financial support from the project EGEE III is acknowledged

COST ESF

 The present work has been carried out as a joint activity of the working groups DeciQ and QDYN of the COST D37 Action CHEMGRID A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ... on the Grid: towards GEMS

A + BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

References

A Laganà

Towards a grid based universal molecular simulator, in A Laganà, G Lendvay Eds "Theory of the dynamics of elementary chemical reactions", 363-380 (Kluwer, 2004)

C Angeli, G L Bendazzoli, S Borini, R Cimiraglia, A Emeerson, S Evangelisti, D Maynau, A Monari, E Rossi, J Sanchez-Marin, P G Szalay, A Tajti

The problem of interoperability: a common data format for Quantum Chemistry codes

Int J Quantum Chem 107, 2082-2091 (2007)

DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html

A Aguado, C Tablero, M Paniagua Global fit of ab initio potential energy surfaces I. Triatomic systems Comp Phys Comm 108, 259-266 (1998)

D Skouteris, J F Castillo, D E Manolopoulos ABC: a quantum reactive scattering program

Comp Phys Comm 133, 128-135 (2000)

A priori modeling of chemical reactions on a grid-based virtual laboratory

S Rampino et al

Outline

Introduction

Modeling chemistry ...on the Grid: towards GEMS

+ BC reactions

The quantum view Solution methods Quantities of interest

qGEMS, workflow

Overview The interaction interlude: Q5, D5 Dynamics

$H + H_2$, prototype

Computing details ABC, distribution

Perspectives Building GEMS...

Acknowledgments

References

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ○ 臣 ○ の Q ()