
References:
 1. Krol, D: Semantic-based SLA-oriented proactive performance monitoring, Msc. Thesis, AGH, Krakow, 2009.
 2. W. Funika, P. Godowski, and P. Pegiel: A Semantic-Oriented Platform for Performance Monitoring of Distributed Java Applications, in: M. Bubak,
 G. D. van Albada, J. Dongarra and P.M.A. Sloot (Eds.), Proc. of ICCS 2008, Krakow, Poland, June 2008, volume III, LNCS 5103, Springer, 2008, pp. 233-242
 3. Autonomic computing web site IBM, 2001, http://www.research.ibm.com/autonomic
 4. Francoise Baude, Denis Caromel and Matthieu Morel. From Distributed Objects to Hierarchical Grid Components. LNCS 2888, pp. 1226-1242.
 Springer Berlin / Heidelberg, 2003

Semantic-based SLA-oriented performance
 monitoring in the ProActive environment

 Dariusz Król <dkrol3@gmail.com>, Włodzimierz Funika <funika@agh.edu.pl>
 Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Krakow, Poland

Nowadays, most of the science disciplines as
well as most of the business markets are aided
by computer systems. From some time now,
commercial companies are getting more and
more interested in one of the existing contract
types, called
Service Level
Agreement
which is
signed
between
the software
provider and
the software
consumer.

In the last several years, the need for supporting long
lasting and more complex applications with the
computer systems was emerging. It`s a great issue
when combining with a need of maintaining these
applications on a level defined by SLA. Especially,
when considering distributed business applications,
 the problem of
 enforcement of
 SLA contracts by
 adapting the
 system to the
 current state of
 the runtime
 environment in
 an automatic
 way is highly
 important.

Our solution to
the problem [1]
is based on
applying
mechanisms
known from the
autonomic
computing [3]
for managing
the application in
an automatic way.
The most important
feature of the designed solution is optimizing an
execution of the supervised application at runtime.
Semantic information about the runtime environment
along with on-line monitoring are utilized to precisely
locate bottlenecks of the application and perform
a necessary optimization according to a defined SLA.

 Although the
 existing
 prototype can be
 applied in a
 number of use
 cases, it still
 requires
 work in the
 following
 aspects:
 - scalability and
 reliability : in order
 to optimize high available application (e.g. 99.99%
 availability) the presented system has to work with
 an even higher value
- self-healing : such features as restarting or restoring
 the supervised services when the system (server)
 fails or goes down.

 A typical
 example of
 an internally
 distributed
 service is
 depicted in
 the figure on
 the left. The
 client has a
 signed SLA
 contract with a
service provider about maximum response time.
The client sends a request to a server which uses
other machines for parallel computation. Bad
things may happen if these machines will run
some other jobs at the same time.

A prototype implementation of the presented
approach is realized in form of a distributed
system whose component diagram is depicted in the
figure below. Two most important components are:
- Configuration manager which handles notifications
 from the monitoring
 system,
 - Ontology
 model facade
 which
 responses to
 questions about
 information
 stored in a
 knowledge base.

During
implementation
work the
following tools
were used:
- ProActive
 parallel suite
 [4] for creating
 distributed
 services,
- the IC2D tool [4]
 for monitoring a
 ProActive-based application,
- SemMon semantic-oriented monitoring system [2],
- Jena semantic framework,
- Java-related technologies (e.g. JMX, RMI).

The prototype implementation was tested in a typical
use case with one worker thread and two nodes. An
SLA contract between service provider and consumer
contained a requirement about the maximum response
time of a service. The formulated strategy was applied
to migrate the worker
thread between
available nodes
at runtime
according to
current situation.
The response
time metric is
depicted in the
figure on the
right.

Tools

Details

Example Solution

Results

Intro

Future
work

Problem

References:

