
CGW ‘09

Using extremal optimization for 
Java program initial placement 

in clusters of JVMs

E. Laskowski1, M. Tudruj1,3, I. De Falco2,
U. Scafuri2, E. Tarantino2, R. Olejnik4

1Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2Institute of High Performance Computing and Networking, ICAR-CNR,

Naples, Italy
3Polish-Japanese Institute of Information Technology, Warsaw, Poland

4Computer Science Laboratory of Lille, University of Science and
Technology of Lille, France.

{laskowsk, tudruj}@ipipan.waw.pl
de.falco@icar.na.it

Richard.Olejnik@lifl.fr



1

Motivation

� Efficient load balancing on Grid 
platform

� Distribution management:
� load metrics: CPU queue length, 

resource utilization, response time

� communications metrics: transferred 
data volume, message exchange 
frequency.

� Balancing strategies:
� optimization of initial distribution of 

components of an application
(initial object deployment)

� dynamic load balancing (migration of 
objects).



2

Initial deployment 
optimization steps

� Measure the properties of the 
environment (CPU power and 
availability, network utilization).

� Execute a program for some 
representative data (data sample):
� carry out the measurements of the number 

of mutual method calls and data volume

� create a method call graph (a DAG) with 
the use of method dependency graph and 
measured data.

� Find the optimal mapping of the graph

� Deploy and run the application in 
ProActive, a Java-based framework for 
cluster and Grid computing



3

EO algorithm

� An introductory optimization algorithm 
determines an initial distribution of 
application components on JVMs
located on Grid nodes

� The problem is to assign each subtask 
to one node in the grid in a way that the 
execution of the application task is as 
efficient as possible
� the optimal mapping of application tasks 

onto the nodes in heterogeneous 
environment is NP–hard

� So, we use the Extremal Optimization 
algorithm for mapping of tasks to 
nodes



4

The principle of the EO

� Extremal Optimization is a co-
evolutionary algorithm proposed 
by Boettcher and Percus in 1999

� EO works with one single 
solution S made of a given 
number of components si, each of 
which is a variable of the problem, 
is thought to be a species of the 
ecosystem, and is assigned a 
fitness value φi

� Two fitness functions, one for the 
variables and one for the global 
solution.



5

The outline of the EO

� an initial random solution S is 
generated and its fitness Φ(S) is 
computed

� repeat the following until a 
termination criterion becomes 
satisfied:
� the fitness value φi is computed for 

each of the components si

� the worst variable (in terms of φi) is 
randomly updated, so that the 
solution is transformed into another 
solution S’ belonging to its 
neighborhood Neigh(S)



6

Pseudocode of the τ-EO 
algorithm

The only algorithm parameters are:
− the maximum number of iterations Niter

− the probabilistic selection value τ



7

Fitness of a solution

� Fitness function of a mapping 
solution:

where
− θij

comp the computation time needed to 
execute the subtask i on the node j to 
which it is assigned by the proposed 
mapping solution

− θij
comm the communication time 

requested to execute the subtask i on 
the node j to which it is assigned by the 
proposed mapping solution

− θij= θij
comp+ θij

comm is the total time 
needed to execute the subtask i on the 
node j to which it is assigned by the 
proposed mapping solution.



8

Experimental results

� τ-EO parameter setting
� Niter = 200,000 
� τ = 3.0 

� 20 runs on each problem

� Two experiments reported in the 
presentation:
� a simulated execution of an 

application in a test grid (10 sites, 
184 nodes with different power and 
load)

� an optimization of a ProActive
application in a cluster (7 
homogenous, two-core nodes).



9

Experiment 1 – the test 
Grid

� A Grid with 10 sites, a total of 184 
nodes



10

Experiment 1 - features of 
the nodes

� Average loads: ℓi(Δt) = 0.0 for all 
nodes apart:
� ℓi(Δt) = 0.5 for each i є [22, …, 31]

� ℓi(Δt) = 0.5 for each i є [42, …, 47]
− the most powerful nodes are the first 22 

of A and the first 10 of B

0

500

1000

1500

2000

2500

3000

0 -
21

22-
31

32-
41

42-
47

48-
55

56-
71

72-
103

104-
123

124-
139

140-
147

148-
163

164-
183

power

0

500

1000

1500

2000

0 -
31

32 -
47

48 -
55

56 -
71

72-
103

104-
123

124-
139

140-
147

148-
163

164-
183

bandwidth



11

Experiment 1 – the 
application

A mapping solution is
represented by a vector μ of P 
integers ranging in the interval 
[1,N]

Sub-
task 
P

Sub-
task 
P-1

Sub-
task 
P-2

…Sub-
task 
4

Sub-
task 

3

Sub-
task 

2

Sub-
task 
1

18924…45712

In this example the first subtask of the task 
is placed on the grid node denoted with the 
number 12, the second on grid node 7, and 
so on.



12

Experiment 1 – the results

� The optimal allocation entails both 
the use of the most powerful nodes 
and the distribution of the 
communicating tasks in pairs on 
the same site so that 
communications are faster (only 
intersite, no intrasite)

� the solution allocates 11 task pairs 
on the 22 unloaded nodes in A and 
the remaining 4 pairs on 8 
unloaded nodes in B:

2 22 41 12 20 17 21 13 35 16 18 4 14 39 40

23 1 37 9 11 3 8 10 38 19 5 15 6 33 32



13

Experiment 2 – the basics

� The cluster:
� 7 homogenous two-core nodes,

� Gigabit Ethernet LAN,

� average extra load ℓi(Δt) = 0.0 for all 
nodes,

� each node has Sun JVM installed and a 
ssh agent.

� The scenario of the experiment:
1. CPU power, load and network utilization 

monitoring,

2. application parameters' measuring 
(using the sample data),

3. mapping optimization and the final run.



14

Experiment 2 – the 
application

� A ProActive Java multi-threaded
application, working according to 
the DAG model
� 58 nodes

� the DAG is executed in the loop (200 
iterations)



15

Experiment 2 – the results

� Since the nodes are homogenous 
and without the extra load, the EO 
mapping balanced the amount of 
computations assigned to each 
node:

Node nb: Amount of computations

0 1999

1 2005

2 1993

3 2004

4 2002

5 1980

6 1994



16

Typical evolution of τ-EO 
on a mapping problem

� Evolution of the best-so-far value is 
shown on the left, and both best-
so-far and current solutions for the 
first 200 iterations are shown on 
the right



17

Conclusions

• Extremal Optimization has been 
proposed as a viable approach to the 
mapping of the tasks making up an 
application in grid environments

• The unique feature of the presented 
approach is the ability to deal with 
different load of nodes and the 
diversity in network bandwidths

• τ-EO shows two very interesting 
features when compared to other 
optimization tools based on 
Evolutionary Algorithms (e.g. 
Differential Evolution:

– a much higher speed
– its ability to provide stable 

solutions.


	09
	CGW 09-poster-vf.pdf

