

MetaCenter Virtual Networks

•

David Antoš, Jiří Sitera, Petr Holub, and Luděk Matyska

CESNET, z. s. p. o. Prague, Czech Republic

MetaCenter and Virtualisation

- Czech national Grid infrastructure (http://meta.cesnet.cz)
- computation nodes in Brno, Pilsen, and Prague
- connected with Czech NREN CESNET2 (10GE)
 - physical and virtual nodes have public IP addresses
- virtualisation
 - increasing user control of the infrastructure
 - \rightarrow "dumb&passive" network no longer sufficient
 - \rightarrow network support necessary
 - \rightarrow VirtCloud design (not specific to CESNET2)

Virtual Network

- traditionally: network as a fixed resource
- virtual clusters
 - (dynamically) mapped to the physical infrastructure
 - user controlled (by means of Grid middleware)
- our approach: network as "just another resource"
 - planned by resource planning system
- virtualisation of networks
 - Virtual LAN—illusion of LAN over a more complex infrastructure
 - Virtual Private Networks—illusion of presence in a remote network

- privacy and security
 - mutual isolation of virtual clusters
 - \star user protection
 - user-provided OS image
 - legacy insecure components
 - controlling inbound/outbound traffic
 - \star attack/misuse prevention
- networking
 - limited amount of IPv4 addresses
 - hardcoded IP addresses in machine images
 - ★ allowing multiple instances of such clusters
 - attaching the cluster to user's network

CESNET

Design Considerations—Summary

- high-performance virtual private network, state-wide
- dynamic virtual cluster creation
- encapsulation of virtual clusters
- no administrative privileges on the backbone
- controlled user access
- controlled access to external resources
- enabling migration of virtual machines
- multiple instances of identical L3 addresses
- optional cluster publishing

VirtCloud Architecture

- 1. L2 core network (over the state-wide backbone)
- 2. cluster site network
- 3. (physical) host configuration
- 4. VLAN life cycle management service

VirtCloud Implementation I

- core network—available technologies (only high-speed hardware-supported multipoint solutions)
 - Virtual Private LAN Service
 - Cisco Xponder
 - (IEEE 802.1ad (QinQ))
- site network: mix of Force10, HP, Cisco switches
- host configuration
 - bridging in Xen hypervisor
 - Layer 3 addressing is user-driven

VirtCloud Implementation II

- VLAN lifecycle manager (SBF, Slartibartfast)
 - allocates VLAN numbers
 - configures active elements
 - \star has to understand the network topology,
 - \star limitations of switches, ...
 - controlled by PBS
 - \star virtual cluster is represented with a special job
 - cooperates with Magrathea (see poster no. 22)
 - \star Xen domain configuration

Access to (and from) Virtual Clusters

- user access from outside
 - external tunelling
 - * OpenVPN (similar to Nimbus)
 - $\star \ \ \, {\rm ssh\ tunnels}$
- access to MetaCenter data/services
 - attaching the service to the virtual cluster
- access to external resources
 - allowing the external traffic

First VirtCloud Experiences

- interfering large-area networks has performance implications
- the preformance must not be significantly worse than of native IP network
- to show feasibility of the concept
 - stability tests
 - throughput tests comparing
 - * Xponders in physical machines
 - * Xponders in Xen user domain
 - \star VPLS in Xen user domain
 - \star native IP connection
 - $-\,$ iperf, UDP bandwidth with <0.5% loss

Results I

Results II

Conclusion

- architecture of VirtCloud, a system for internetworking dynamic virtual clusters over a large high performance network
- analysis, architecture, implementation
- evaluation: feasible
- future work
 - methods of publishing encapsulated clusters
 - scenarios of Layer 3 addressing
 - strategies of external resource access

