First steps of a monitoring framework to empower risk assessment on Grids

M. Hovestadt, N. Lerch, <u>H. Nitsche</u>, K. Voß

hn@uni-paderborn.de

Cracow Grid Workshop '06, 17th October 2006

- Motivation
- Short History
- AssessGrid
- UMF DesignUMF failover
- ConclusionsContact

Why another monitoring tool? What's wrong with R-GMA, PCP, Ganglia, Nagios ... ? The simple answer is: Nothing!

We wanted/needed special features:

- Runtime configuration of probes
- Flexibility to schedule probes
- Data coherence / integrity / security
- (Almost) No loose of probe data

Q1 2005	 Start development of Nagios Add-On NSCE (Enhanced) Inspired by NSCA Nagios Service Check Acceptor Ease of configuration 		
	Reduce possible data looses		
Q3 2005	Test NSCE on Clusters		
Q1 2006	Extend NSCE to use X.509 certificates for use in		
	D-GRID monitoring tests		
Q3 2006	Start development of Unified Monitoring Framework (UMF)		
	From scratch, based on ideas from NSCE		
	 Flexible probe schedule on client 		
Q4 2006	Start integration of UMF into		

CGW'06, 17th October 2006

AssessGrid Objectives

Advanced Risk Assessment and Management for Trustable Grids

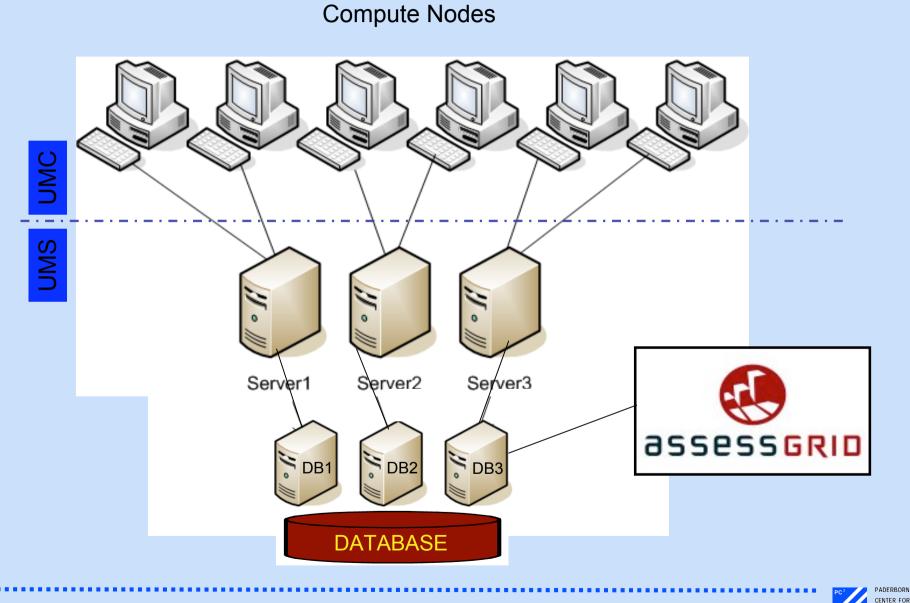
- Objective indicators about the quality of the own infrastructure.
- Risk estimation for different situations (low/high loaded resources, vacation time,overloaded network, etc.) which helps to decide on incoming SLAs and to set a penalty fee corresponding to the risk of failure.

• Decision-support for system development, management, and planning: Grid computing needs a complex infrastructure. Bottlenecks are difficult to detect and not removed by simple investment in oversized hardware. Aggregated risk indicators will show, which parts of the infrastructure increase the risk and should be improved.

• Self-organising fault tolerance mechanisms use certain risk indicators as thresholds to increase the reliability. In case of failures and risk above the threshold, the business policy will be adapted. For example, longer slack-times will be negotiated, the penalty fee will be reduced or even SLAs will be rejected. On the other hand, spare resources will be activated or a redundant processing will be activated.

Using Risk Assessment

- compute risk for SLA violation before offering an SLA
 - make a reservation
- publish the risk in SLA
- determine charge and penalty fee
- monitor risk of SLA violation during job execution
- initiate precautionary FT-actions if risk increases too much
 - checkpointing and migration: select a suitable resource for migration
- these actions are risk management!
 - included in RMS modules

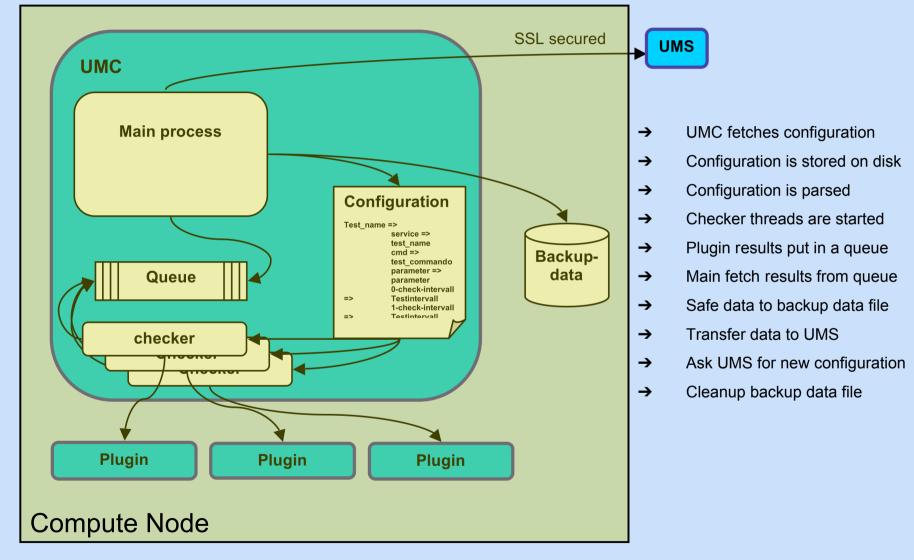

Unified Monitoring Framework features

The key for risk assessment on grid is monitoring!

To fulfil this key role, UMF has built some interesting features:

- Central configuration management for all clients
- Deployment of client is done by simply copying one directory
- > The clients probes can be configured at runtime
- Flexible probe intervals for each probe
- All existing Nagios plugins can be used (some hundred)
- Possibility of data loose is minimised by client local backup data
- Build-in failover for UMC /UMS communication
- Load balancing for communication
- Scalable storage solution (DB based)
- Different priorities for OK, Warn, Critical, Error
- Depending on priority results can be forwarded immediately

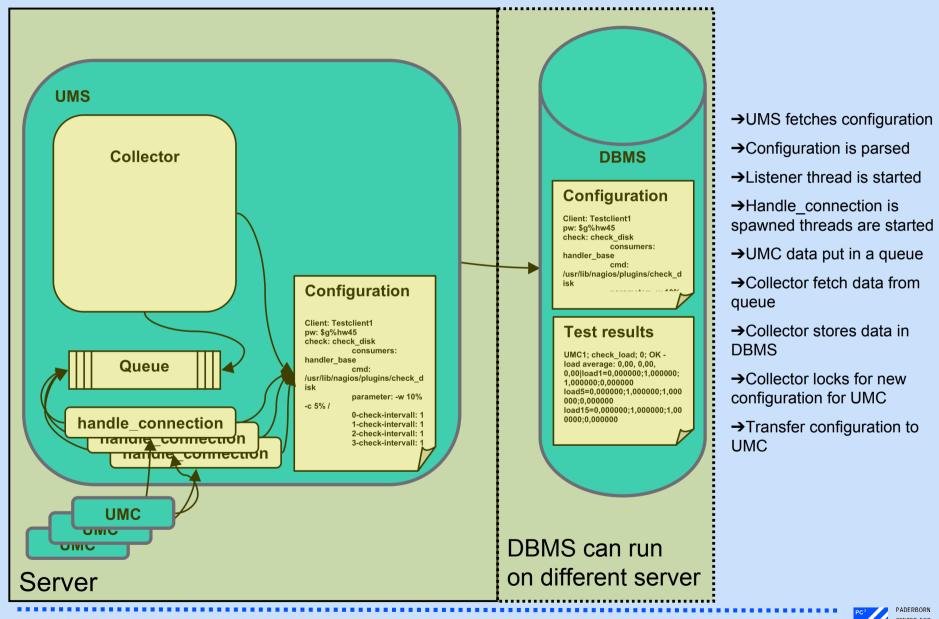
UMF System architecture



CGW'06, 17th October 2006

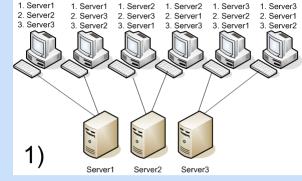
Holger Nitsche

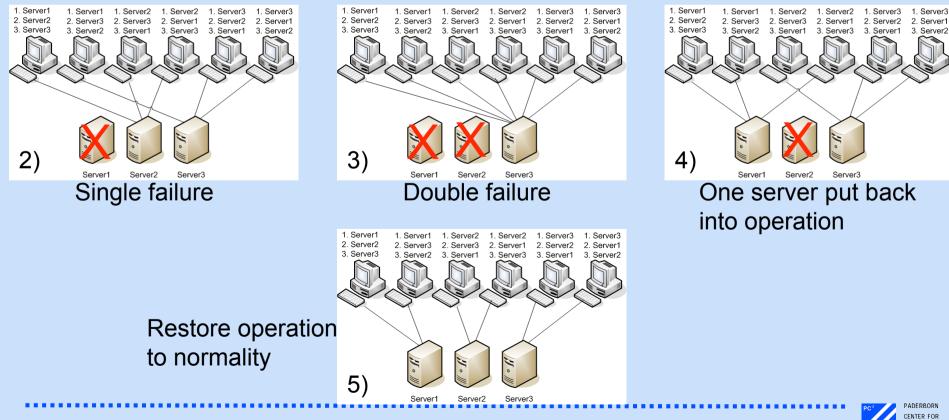
PARALLEL


Unified monitoring client

CGW'06, 17th October 2006

Unified Monitoring Server




CGW'06, 17th October 2006

UMF failover

Initial scenario

PADERBORN CENTER FOR PARALLEL COMPUTING

2. Server1

Server2

Server3

Server2

Server1

CGW'06, 17th October 2006

First results

- Functionality was verified in a small setup (4 nodes)
- Developed Nagios plugin "oprofile" to test granularity of scheduled probes

- With a "normal" set of probes we can scale up to more than 2000 clients on Gigabit Ethernet server
- We can do probes at ~1ms
- We can cope with large data sets per client ~290MB/min
- •Failover does work

Überwachte		MB / Minute		
Komponente	Minute	(800 B / Test)		
Standarddienste				
AFS	1	0,0008		
DHCP	0,1	0,00008		
NTP	0,1	0,00008		
LDAP	1	0,0008		
SSH	0,1	0,00008		
Datenbank	1	0,0008		
DNS	1	0,0008		
Hardware				
Temperaturen	6	0,0048		
Lüfterdrehzahlen	6	0,0048		
Festplattenzustand	6	0,0048		
Spannungen	6	0,0048		
Sonstiges				
CPU-Auslastung	600	0,48		
Speicherauslastung	600	0,48		
Festplattenbelegung	600	0,48		
Netzwerkauslastung	600	0,48		
Logfiles	600	0,48		
Infrastruktur				
Switche	60	0,048		
Router	60	0,048		
Umgebung	60	0,048		
MB / Minute p	2,56664			

0	<u> </u>				
Überwachte	Tests /	MB / Minute			
Komponente	Minute	(800 B / Test)			
Standarddienste					
AFS	60	0,048			
DHCP	0,1	0,00008			
NTP	0,1	0,00008			
LDAP	60	0,048			
SSH	0,1	0,00008			
Datenbank	60	0,048			
DNS	60	0,048			
Hardware					
Temperaturen	6	0,0048			
Lüfterdrehzahlen	6	0,0048			
Festplattenzustand	6	0,0048			
Spannungen	6	0,0048			
Anwendung					
Cache Misses	60000	48			
Pipeline flushes	60000	48			
MemoryAccess	60000	48			
Interrupts	60000	48			
Bus locked Cycles	60000	48			
Pos. im Programm	60000	48			
Infrastruktur					
Switche	60	0,048			
Router	60	0,048			
Umgebung	60	0,048			
Sonstiges					
CPU-Auslastung	600	0,48			
Speicherauslastung	600	0,48			
Festplattenbelegung	600	0,48			
Netzwerkauslastung	600	0,48			
Logfiles	60	0,048			
MB / Minute p	290,32344				

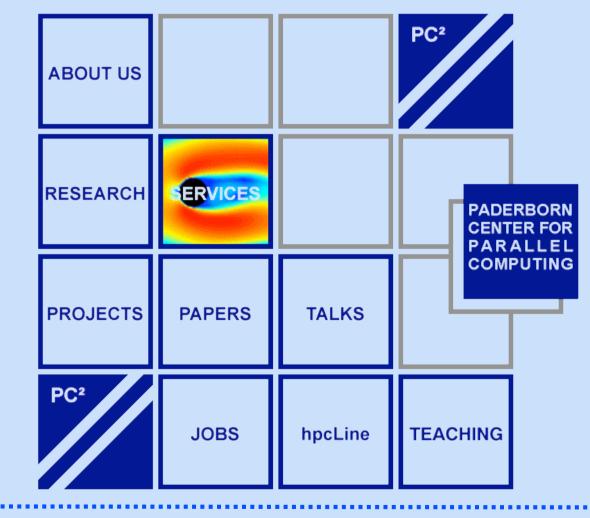
CGW'06, 17th October 2006

 We have developed a first prototype of a Unified Monitoring Client

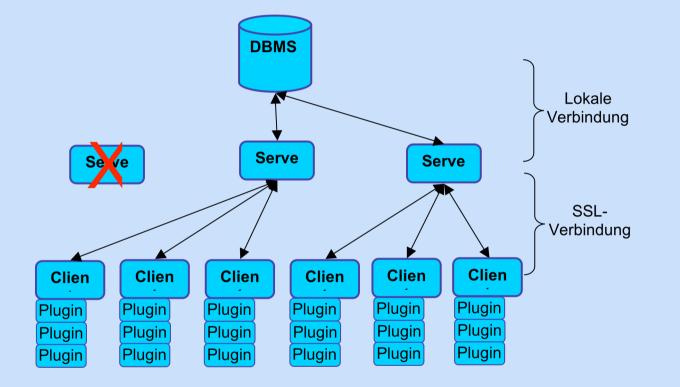
The UMF has some unique features for data acquisition and transmission

We showed promising scalability

We could show a probe rates in Milliseconds


Thank you !

Any remarks or questions?



- mailto: hn@uni-paderborn.de
- PC² homepage at http://www.upb.de/pc2

CGW'06, 17th October 2006

CGW'06, 17th October 2006

- **Motivation**
- commercial users have specific demands on service quality level for job execution
 - SLAs define relationship between end-user and provider (performance, price and penalty fee)
 - agreeing an SLA is a business risk for providers

General Idea

 Therefore: SLA is currently only a concept

Motivation

Conclusion

Migrations

