Data Grids: A Collaborative Semantic
Model with Hybrid Namespace

Prof. Ahmed Sameh

Department of Computer Science, The American University in Cairo

Dalia EI-Mansy
The Southern Methodist University

Texas, USA

Presentation at the Gracow Grid WWorkshop 2006-
Poland, October 15-18, 2006

Outl

Ine

® [ntroduction
= Grid Computing Survey

m Pro
m Pro

nlem Definition
nosed Model

= Merits of the Proposed Model

= Design and Implementation

m Experimental Setup and Results
= Conclusion and Future Horizons

Introduction

The Computational Grid

¢ Origin

+ Virtual Organizations (VO)
¢+ Challenges

+ Middleware

The Data Grid

Definition

Architectural Aspects
Requirements for Data Grid
Functional Design

+ Core Data Grid Services

+ Higher-Level Data Grid Components
The Semantic Grid

® 6 ¢ o

Origin of the Computational Grid

m Huge Data

= Heavy Processing

= \Wide Geographic Distribution
m Resource Uniform Access

m Resource Transparent Access

Virtual Organizations (VO)

= Aggregation on for resource sharing
m Collaborative resource ownership/access
m Goals for resource access :

+ Ease

¢ [ransparency

+ Coordination

¢ Security

The challenges of the Grid

m Information services

= Resource Brokering

= Uniform access to resources
m Security

= Job scheduling

m Data Access

= Data Replication

Grid middleware

= The mid-level software that provides
services to users and to the applications.

m E.g. Globus

Data Grid Definition

® The data grid Is an integrating infrastructure
for distributed computation that allows us to
Identify reguirements and components
common to different systems and hence
apply different technologies in a
coordinated fashion to a range of data-
Intensive petabyte-scale application
domains.

Architectural Aspects

m No specific architecture or topology that
characterizes data grid

= Hierarchical architecture iIs adopted merely
to make search easier and faster

Requirements for Data Grid

m Data files’ replication.

= Grouping multiple data resources as
single (compound) data entity.

= Defining and describing data by
metadata.

= Data 1dentity, ownership and versioning.
= Data publish, retrieve, search & discover.
m Keeping data provenance records.

Functional Design

m Core Data Grid Services
o Authorization and authentication
+ Resource reservation and co-allocation
¢ Performance measurements and estimation
¢ Instrumentation
+ Directory Services
= Higher-Level Data Grid Components
+ Replica management
+ Replica selection and data filtering

High Level

Data Grid Architecture

C omporn ants Replica Selecion (— Sanice SEMice
Replica Managemeant
I
Core Services
Storage System | | Metadata Repaository | |Resource Managament Security Instrumantaticn
CPSS (ane| HPES | | LOAP | aaw| MCAT [[LSF|aan|DIFFSERY kerbercs [eas |NWS |eas| Nell ogoer

Data Grid Specific Services

Generc Grid Services

Data Grid Lavered Architecture

Grid Computing Survey

= Historical Review
= The Evolution of Grid and P2P Computing

= Sample Grid Projects and Research
Works

= Concluding Remarks on Previous \Work
= Motivation

Sample Grid Projects

AppLeS: A Network Enabled Scheduler

Condor: Cycle Stealing Technology for High Throughput
Computing

Data Grid

Globus: A Toolkit for Grid Computing

Javelin : Java based infrastructure for internet-wide parallel
computing.

Legion: A Grid Operating System

MOL.: Metacomputing Online Kernel

NetSolve: A Network Enabled Computational Kernel

Ninf: A Network Enabled Server

PUNCH: The Purdue University Network Computing Hubs
Nimrod-G Grid Resource Broker

Giggle: A Framework for Constructing Scalable RLSs
myGrid : UK e-science project — A Semantic Grid

Problem Definition

Data Grid functional design assumes uniformity of information
Infrastructure intended to sharpen the collaboration operability but
narrows the scope of usability by missing possible cooperation
opportunities

Sometimes Data Grid Contributors fail to follow a unified
taxonomy or naming system. Example Scientific Research
Community

= Data Grid projects are always isolated islands

Contributors do not recognize different degrees of similarity.
Therefore, they do not benefit from it

They could miss cooperation opportunities just because they have
different taxonomies

A wider collaborative model Is needed to glue contributors and data
grids In a relaxed aggregation

Inter-data grid communications are needed

Example : Scientific Research Community

Scientific Research Community

Humanities Natural Sciences Phvsical Sciences ---€te.
Math Physics Chemistry Computer Science ...etc.
Pure Math Applied Math

/ Common Servers

Institutional Servers

Same

The field of Algorithms can be classified differently in different
institutions

Proposed Model

= Defining the model
¢ Overview
¢ Introducing data grids to the model
+ Wider scope collaboration

= Usability of the model

m Security of the model

= [he design goals of the model

Proposed Model

= A wider collaborative model is designed in an effort to solve
the problem

= A middle ground solution that let the research centers in
different institutions follow their preferred taxonomies while
automating the effort the researchers pay when looking around
for knowledge

= Unifying the upper part of the hierarchical namespace that is
common worldwide.

m Then let research centers join on that basis and start their
different classifications.

= The common part of the namespace Is represented by a
hierarchy of huge servers.

m Institutions” servers branch from any level of the common
namespace server hierarchy

= Transitive non-recursive “Same” relations to link equivalent
Institutional servers.

Proposed Model (ctd.)

“Same” relations between “Common Servers” will be navigated from the
underneath servers to find possibly “Same” servers in other parts of the
hierarchy (same topics classified differently by different institutions)

Explorative tools will be used by new servers to nominate candidate
“Same” servers. Administrators, then, should study the decision of
applying for “Same” relations with the nominated servers. The nominated
servers are supposed to expose a brief narrative expression of their
Interests

Dynamic configuration can be done to optimize the search cost
(Deepening). Eg. If the administrator of a "Common Server" noticed that
many of its direct "Institutional Server" children are linked with “Same”
relations (representing a specific branch of science) then he can take the
decision of creating a direct child “Common Server” for that branch of
science then inform all the “Same” “Institutional Servers” to follow the
new taxonomy

The Grid concept Is introduced to our model through the three kinds of
relations: “Child", “Same™ and “Similar”. “"Child™ relation maintains a

simple hierarchical namespace (taxonomy) and the other two relations
maintain gray-scaled hybridization to the namespace.

Proposed Model: Common and Institutional Servers

Scientific Research Community

Humanities MNatural Sciences Phvsical Sciences ---etc.
Math Phvsics Chemistry Computer Science __.etc.
Pure MNath Applied Math

/ Common Servers

Instintional Servers

Common Servers and Institutional Servers and “Same” Relation

Proposed Model (ctd.)

Scientific Fesearch Community

Humanities MNatural Sciences Physical Sciences --efc.
Math Phwvsics Chemistrv Computer Science et
ry
|
I Same
Pure Math Applied Math Computer Science
Common Servers

Institutional Servers

The two “Institutional
Servers called “Alzonthms
can discover each other by
navigating the “Same™
relation between their parent
“Common Servers’

Utilizing “Same” relations between “Common Servers”

Proposed Model: Deepening

Not a child
of the same
“Common
Server”

/
/\ / Y1| |Y2

Z1 Z2

YYY2

YYY1

Has chosen
not to join
the
restructure

YY1 | [YY2

YYY1| [YYY2 /\

Common server replacing Same Institutional Servers

Wider Scope Collaboration

® The data grids established by “Same” “Institutional
Servers” collaborate, as whole data grids, in a bigger
collaboration model.

m They benefit from the common name that will prefix
all of their resources’ names.

m Reguests in the wider collaborative model use the full
resource names.

= Reguests in small data grids will use the logical
names without any prefix (they are traditional data
grids).

Wider Scope Collaboration (ctd.)

m The larger collaborative model contain many data grids

m “Similar” “Institutional Servers” in different data grids are
Intentions for wider collaboration between them

m Data grids establish the wider collaborative model easily because the
resource full names are unique

= Proxy agents can reside into the data grid servers to represent the
other data grids

m The agents maintain the resource updating on the servers they
represent by applying a suitable refresh rate according to the
dynamics of those resources.

Wider Scope Collaboration (ctd.)

m The info services and resource brokerage logic
of each data grid will be encapsulated into the
proxy agent It exposes.

m Actually, the proxy agent, as defined by this
model, Is a unified interface of inter-data grid
gateways.

Usability of the Model

m Explorative tools can be designed to help users
navigate the huge hierarchy of common and
Institutional servers

m Search results are sorted according to
relevance

m Sidekicks can be performed by explorative
searches following “Similar” relations to each
“Same” server where the resource Is found

Usability of the Model (ctd.)

= A user hooked to an “Institutional Server” can login as a user
of the small data grid which his server is a member of, and he
will be using non-prefixed logical resource names

= He can also login as a user of a wider collaborative model
which his local data grid is a member of, and he will be using
prefixed logical resource names

= He can login also as a free user to surf the whole hierarchy of
servers using the explorative tools to discover institutions, data
grids and wide collaborations. This surfing will help server
administrators make decisions on joining data grids and
creating/deleting “Same” and “Similar” relations with other
SEervers.

Security of The Model

Data grids are responsible of their security.

They need to implement their own security models on their servers and on
the stubs that handle their exported proxy agents as well

The model depends on the directory server security system
The model’s security will adopt recursive trust scheme for extensibility

Each server brokers its children’s authenticity at its parent’s side when
broadcasting their requests

It also brokers its authenticity at its child servers when multicasting its
parent’s requests to them

A server, then, Inherits its authenticity from its parent server while
Imposing Its authenticity on its child servers

This decentralized authentication pattern guarantees no bottlenecks
known in the centralized security models

The Design Goals of the Model

= To make the collaborative model as much attractive
for servers from different institutes to join as possible

+ Allow existing data grids to join as IS

+ Contributors that are currently unable to establish
data grids will be able to establish relaxed
collaborations through “Similar” relations

¢ They can also negotiate “same” relations with
each other so that they can establish data grids

Merits of the Proposed Model

= No added burden on the existing data grids to join
m It does not interfere with the data grid themselves
= The Data Grid manager server has no role to play

need not be a member of the model at all
m Data grids can join even partially

m The servers in the model store the IDs of the Data Grids (recorded

by the model) that they are members of

A server contributing in our model can join as many Data Grids as
It wants. It can be even a member of external Data Grids that are
not recorded by the model

All of these flexibilities make the decision to join the model
“theoretically costless”

Server and existing data grids have nothing to lose and everything
to gain by joining this model

Semantics increases interoperability between our model and other
models’ agents searching the web for information

Contributions

m Costlessness:
+ Simple interface
+ No preparative steps needed
m Comprehensiveness:
+ All players can find each other and the existing data grids easily
= \Wideness:
+ Inter-data grid brokerage for wider collaborative scope
= Hybridization:

+ Gathering contributors with different naming schemes (taxonomies) in one collaboration
model

= Promotion:
+ Encouraging the unification of the namespace (deepening the common part)
= Flexibility:
+ Data grids can join even partially
m Abstraction:
+ Data grids encapsulate their details
m Scalability:

+ The decentralized approach helps the model to grow freely, The limited scope of each
server makes it easy to build huge hierarchy since that no centralized authorities are
consulted

+ Servers store logical coordinates (IDs) for “Same™ and “Similar* servers only so moves
easy

+ The scalability is maintained also on operational level; the processes that involve huge
numbers of transactions (like exploring servers, data grids and resources) are distributed
over the hierarchy

Measure of Success

m To measure the success of the model, we can find
a sponsor and implement the model for a related
field (as per the sponsor’s interest).

®= Then we can advertise the model aggressively
among all candidate contributors.

m The success can be reflected by the number of
join applications and reguests for further
Information about the model.

= Alternatively, we can build and advertise an
Internet site that explains the model and poll
opinions and willingness of joining.

Design

S
s

Administration Module

1
i_1 1 Module : Main Module

I IT

S tdeI

Directory Server (Supporting LDAP)

High Level Server Architectural Design

Design

M ain
Main. Action
L
.-"I"-. .-"I"-.
| | Simulator
| I
KLIBEE |
G |
______ i |
I
: e | Simulater
h _________ _

High Level Class Diagram

wiibiliby e
A cficm

Detailed Class Diagram

| m1ain |
[|
|
]
I - A L
[[: - e
| | i | I
I I [| LS S wirmlerfissce s I
l l [] Proxy&gent
l l i 'I ELISS S
] | e —
1
i i i i |
| | 1 1
I I i sl = dapPravidar |
] I Message k_______l I
l l B L T e I
I I i I |
I I : 1] T 1
| | [
[[. 1 I
| | i Lo
I I hl_lEEEl-:i I I I
| | [
| | : [
I I SarveriDat= I I |
| LS S e | I i
| CINE1=T-E i Tl | | |
l l i Fd e
TR = N B B
o S .
| | FPralile ELISSS =
I I I I Lo
| | LIRS | I
i | — P
[
i I
l_______":;l -]

Design(ctd) Server Architectural Design

¢

Main Module: The central daemon that should be always running.
It encapsulates the directory services for flexibility. (Any
technology, like LDAP, can be adopted by the servers while not
affecting the whole model). Also, it limits the security boundaries
to a narrower zone.

Communications Module: This module wraps the used
communications protocols like TCP/IP and the like. It should
expose the communications functions like “SendMessage(Msg)”,
“RecelveMessage()”, HandleMessage(Msg).

Security Module: This module handles the authentication and
verification issues. It will store the server identity and all the local
users’ credentials.

GUI Module: This module allows the user to use the provided
functionalities.

Administration and Maintenance Module: Used by administrators
to configure, set policies, deploy, recover, troubleshoot...etc.

Proxy Agent Module: This Is a framework for Data Grids to
export their data content to each other.

Design (ctd.): Server Functional Design
m [Data Items

® €& & & & o o o o

ID: Unique id reflects the server location in the hierarchy

Name: A string to characterize the server content

Type: Type of Server C: Common, I: Institutional

Profile: A brief on the server’s mission (interests, goals)

Ontology: Describes the server’s mission in machine-readable form.
URL: The URL of the server.

ParentURL: The URL of the parent server.

ChildList: A list of the child servers (IDs and URLS)

SamelList: A list of server IDs that are in direct “Same” relations with
the server

SimilarList: A list of server IDs that are in direct “Similar” relations
with the server

DGRegistry: A list of DGIDs of the Data Grids registered by the

server with their profiles, Proxy Agents” code and manager server
URLSs. (This occurs only in Common Servers.)

Design (ctd.) Server Functional Design

¢ Server Functions

¢+ URL_FromID(ServID): Returns the physical location (URL) of the Server identified by
ServID (the logical location inside the hierarchical name space)

<&

IDFromURL(ServURL): Logins the server pointed by ServURL as guest and returns its 1D

+ SameGroup(): Creates the recursive collection of SameList on all the Same Servers (in the
local SameL.ist)

+ SimilarGroup(): Same as for SameGroup() but for “Similar” relation.
+ IsSame(ServiD): Returns true if ServID is in SameGroup
+ IsSimilar(ServiD): Returns true if ServID is in SimilarGroup

+ AddChild(): Creates an id by suffixing ID with ChildSeguence (after incrementing it by one)
then adds it to ChildList. It returns the id of the added child

¢+ AddSame(ServiD): Adds the server identified by ServID to the SameL.ist if not already a
Same Server

+ AddSimilar(ServiD): Adds the server identified by ServID to the SimilarList

» PackMessage(FromServ, ToServ, ReplyToRefNo, Subj, Body): Returns a Message object
populated with the parameters with RefNo set to the next SequenceRef and the field
sentDate Time set to the system date and time

Design (ctd.) Server Functional Design

¢ Server Functions

¢

SendMessage (Msg): It attempts to login the server pointed by Msg.to.url as guest. If
successful, it sets Msg.status to New and Msg.receivedDateTime to system date and time then
it stores Msg in the inbox of that server. If the last steps were successful, it attempts to set
Msg.status to "Sent" and store it into the SentBox of the local server. All these steps should be
done into a transaction to maintain data consistency

FetchMessage(): Returns a message that has arrived from another server (if any). The main
loop of the Main Module will hook into this function periodically to fetch new messages

ReadMessage(Folder, Index): Returns a message from Folder at Index if any
HandleMessage(Msg): Message handler for received messages

RequestChild(): Requests establishing a “Child" relation with the server pointed by
ParentURL.

ReguestSame(ServiD): Requests establishing a “Same” relation with the server identified by
ServiD.

ReguestSimilar(ServiD): Requests establishing a “Similar” relation with the server identified
by ServiD.

FetchRequest(): Returns a message from RequestsQueue if any

HandleReguest(Msg): Handles a request coming from another server

Design (ctd.) Server Functional Design
¢ Server Functions

+ RegisterDG(DGID, MgrSrvURL, Profile, ProxyAgent): Creates a new
entry in the Data Grid Record after assuring the uniqueness of DGID

+ QueryResource(Res): If Name is prefixed with a Server ID or a DGID, it
consults the corresponding server or Proxy Agent, otherwise, it propagates
the guery to all proxy agents on board and servers in SameL.ist

+ QueryDGResource(ServiD, DGID, ResName): Logins the server identified
by ServiD and downloads the proxy agent of the data grid identified by
DGID from it then gueries ResName from that proxy agent. (the data grid
DGID is supposed to be registered on ServiD)

¢+ QueryServerResource(ServiD, ResName)
¢+ QueryResourceAlias(ResName)

s QueryServerResourceAlias(ServiD, ResName): Queries the resource alias
ResName on the server identified by ServiD

Major Server Components: Explore Server Tool

ExploreServer(KW)

Local Server

i

+—
Key

Save(Key, ServID)

Save(Key, ServID)

Save(Key, ServID)

Browse(Key)

A 4

ExploreServer(KW, Key)

Local Server

Connections

Connections of
Local Server

Found(Key, ServID)

ExploreServer(KW, Key)

Connections

Found(Key, ServID)

ExploreServer(KW, Key)

»
»

Found(Key, ServID)

AL

AA

Found(Key, ServID)

AA

Found(Key, ServID)

Found(Key, ServID)

AL

AL

Found(Key, ServID)

Found(Key, ServID))

AL

Found(Key, ServID)

AL

LYY

AL

+—
Result List

Release(Key)

l Retrieve(Key)

l Purge(Key)

Sequence Diagram

Major Server Components: Explore Server Tool State Diagram

i Explore

%wale of candidate Same/Similar senrera

! Send Request Messages

Waiting Replies

&

{ Recely

e Replies

Agreed with candidate servers

\

{ Sand Same/Similar requests

r|E stablish SamefSimilar relations '

Use Scenarios: Installation (Admin)

M/C wi/t IP + Java VM + Directory
Server

4 Run Install H
/

Request joining
a parent server

“Natural Sciences”
“Cl”

7

Request

“Biology”
“Common Server”

“Biology”
“Common Server”

/

Join request

e s

“Natural Sciences”
“Cl”

“Biology”
“C3-C1”

Use Scenarios: Setup (Admin)

[Create Server
. =1 Created |

{ Request Child

Setup state diagram

Use Scenarios: Resource Discovery (users of leaf servers)

Local data grid resources:
XX-Data

Server resources:

S1.XX-Data
User connected as a S2 . XX.Data
data grid user S3.XX.Data
...etc.

Other data grids’ resources (Provided by proxy agents):
DG1.XX-Data (Provided by DG1_Proxy Agent)
DG2.XX-Data (Provided by DG2_Proxy_Agent)
DG3.XX-Data (Provided by DG3_Proxy_Agent)

...etc.

Data Grid Resource Discovery

Use Scenarios: Resource Discovery (users of leaf servers)

3rd order “Similar” servers’ resources:
*RI (Provided by SI)

*Rm (Provided by Sm)

*Rn (Provided by Sn)

'Y ate

25t order “Similar” servers’ resources:
*Ri (Provided by Si)

*Rj (Provided by Sj)

*Rk (Provided by Sk)

'Y ote

1st order “Similar” servers’ resources:
*Rx (Provided by Sx)

*Ry (Provided by Sy)
*Rz (Provided by Sz)

'Y otfe

|_eaf server user “Same” servers’ resources: Less relevant
ied -R1 (Provided by S1) /
connected asa —|.gs (provided by S2)
traditional user. |[Rr3 Eprovided by S3) [Sige Kick:
Sl “Similar” of S3 resources:

-Rq (Provided by S31)
-Rp (Provided by S32)
-...efc.

Server Resource Discovery

Use Scenarios: Resource Discovery (Data Grid User)

Local DG Proxy Agents
Server at Local Server Parent

Discover(Name) Server
g Query(Name, Key) 1

«— !
1#

DG Proxy
Agents at
parent server

Discover(Name, Key)

A 4

Query(Name, Key) g

Nd

Discover(Name, Key)

Found(Key, DGID) ﬂ

Discover(Name, Key)

Found(Key, DGID)

v

'
L &

Al

| Save(Key, DGID)

=

 Found(Key, DGID)

ﬂ
t
E T

AL

Found(Key, DGID)

AL

! Save(Key, DGID) [

Found(Key, DGID)

7 YO

Save(Key, DGID) [
1 Browse(Key)
g | .
|: Result —.—<—| Retrieve(Key)
List !
D Release(Key) !
-
|:<_| Purge(Key)

Sequence Diagram

Use Scenarios: Resource Discovery (users of leaf servers)

< ”) Discover(Name, Key)

Local Server 'Same Servers ' Similar Servers
D Discover(Name) ' : :

g

Key) 1
Discover(Name, Key) !

, eoeo
Discover(Name, Key)

A 4

Discover(Name, Key)

E‘ Found(Key, ServiD) ﬁ Found(Key, ServID)

5 Save(Key, ServID)5_

_ Found(Key, ServiD) Found(Key, ServiD)

i Save(Key, ServID) E“’“

A 4

List

Browse(Key)
4+—
D Result L ; | Retrieve(Key)

Release(Key)
D L3 purecen)

Sequence Diagram

Use Scenarios: Leaving The Model (Admin)

C C
S1 SSS S1 SSS
. X f 7
\ / /
AN \ / /
N § \ / /
AN \\ Same //
N Similar / Similar
Same\ \ / /
AN \ /I /
N ' //
S2 |le————|—-—5am /g p.s0) S2 / S (D:s)
SS kSimﬂ; SS'
S2A S2A
N
Sme J SA SB sC SA SB sC
SA, S, C SB, S, C SC, S, C SA, S SB, S SC, S

Server S is leaving the model

Implementation

m All the Internet Taskforce Standards have been adopted in the
Implementation: Java is used for development, LDAP for directory
services and XML will be used for data exchange when third
parties (application developers) develop add-ins in the future (e.g.
more relations other than "Same" and "Similar").

= All modules of the server software have been written in Java for
heterogeneity and platform independence. For the proof-of-
concept purpose In this thesis, a simulator module was also
developed to simulate many servers.

= Data Grids mentioned In this model can be of any implementation.
The model keeps record for them and for the manager server of
each of them. The user of this model will need to follow the rules
of each data grid as imposed via its manager server. The model
will not keep record for membership of the Data Grids. If a server
needs to know any info about the Data Grid, It should call
GetDataGridManager (DGID) then contact the server identified by
thedr\eturned global ID (e.g. IP of the manager server of the data
arid)

Implementation : GUI

N GG i o o
Server | Admin Explore Config Help
Login Server
View Mame Space
Exit
ost
DN

Main Menu: Login Server

Implementation : GUI

LocalHost o=Hatural Sciences,o=5cientific Research Community

Server | Admin | Explore Config Help
i Create Server Alt-C
Edit Server
Delete Server =1
Request F Request Child
Handle Foreign Requests Request Same
Manage Content »| Request Similar i
Manage Mail Boxes

Command Successiul-= SetCredentials: Userflame= FPassWord= =7
Comimand Failed----- = Login: LocalHost, o=3tatistics,0o=3cientific Research Comimunity,

Command Successiul-= SetCredentials; Userflame= FassWord= """
Comimand Successful-= Login: LocalHost, o=katural Sciences,o=Scientific Research Cormmunity,

Admin Menu: Request Child/Same/Similar

Implementation : GUI

LocalHost p=Matural Sciences,o=5cientific Research Community

Server | Admin | Explore Config Help

Create Server AltC
Edit Server
Delete Server BS

Hequest 2
Handle Foreign Requests

- 1 ik

Manage Contemnt F Resource Managemenmnt

Manage Mail Boxes Data Grid Management

Comimand Successful-= SetCredentials: Userkame= PassWaord= ="
Comimand Failed----- = Login: LocalHost, o=5Statistic s, o=Scientific Research Community,

Command Successful-= SetCredentials: Userflame= FassWord= 77
Command Successful-= Login: LocalHost, o=katural Sciences,o=5cientific Research Community,

Admin Menu: Content Management

Implementation : GUI

LocalHost o=Hatural Sciences,p=5%cientific Research Community

Server Admin Explure| Config Help

Explore Resources
Explore Data Grids
ID o=l Explore Servers

User

Host | ncalHost

DN o=patural Sciences o=Scientific Research Community

Command Successful-= SetCredentials: Usertlame= FPassWord= =7+
Command Failed-----= Login: LocalHost, o=5tatistics, o=5cientific Research Community,

Commmand Successful-= SetCredentials: Userfame= PassWoard= =7+
Command Successful-= Login: LocalHost, o=Matural Sciences, o=Scientific Research Community,

Explore Menu: Resources/Data Grids/Servers

Implementation : GUI

LocalHost o=Hatural Sciences,0=5cientific Research Community :
Server Admin Explore Config Help

User
ID' o=Matural Sciences, =5iences
Host | ncalHost

DN g=natural Sciences,o=Scientific Research Commun

Login Server

Host URL
‘LocalHnst |

User Name Password
| | <Pk || |

Server DN

‘D=Natural Seiences,0=Scientific Research Cammunity H < Pick ‘

Login Cancel

command Successiul-= SetCredentials: Userhlame= Passitford= ="
command Failed-—-—-= Login: LocalHost, o=5tatistics,0=Scientific Research Communiy,

Command Successfil-= SetCredentials: Usertame= Pagsitord= =
command Successul-= Login: LocalHost o=Matural Sciences o=Scientific Research Community,

Select User Hame

Host Entries

7 LocalHost 1
¢ [o=Geientific Research Cammunity

D o=Root

D cn=0irectory Manager

Select Cancel

User Hame

cn=Directory Manager o=Scientific Research Community

Login Server Form

Implementation : GUI

Create Server

Host URL

|L0caIHDsﬂ

User Name

Password

|cn=DirectDr\,-' Manager,o=Scientific Research Cammunity

| <Pick | [reeer |

Base DN

| <pick |

Server Type Sever ID Sever Name

|Cummun = | | |

Sever Profile

Create Server Form

Request Child

Host URL

LocalHost

Server DN

< Pick

Buody of Requesting Message

Request Cancel

Request Child Form

Implementation : GUI

Handel Foreign Reguests

Fram Subject Received

Cancel

Handle Foreign Requests Form

Implementation : GUI

Manage Mail Boxes

l/ Inbo= Sent Owutgoing

From | Suhbject Received

Purge Messarqges Delete Selected Messages

Manage Malil Boxes Form

Testing Strategy

Test Data
Fields of Science

Experimental Setup
Five machines with Windows XP/Java/LDAP/Our System

Functional Testing:
Each Individual Function was tested separately

Deployment Testing:
Overall system testing to test longer scenarios like Deepening, etc.

Simulation Testing:
Many servers and events were simulated to test the overall system
functionality

L est Data : Scientific Research Taxonomy

u ”Common™ Servers
] Natural Sciences
. Mathematics
¢ Pure Mathematics
. Algebra
. Geometry
* Applied Mathematics
. Mathematical Physics
. Mechanics
. Physics
— Acoustics
L 2
] Humanities
. Anthropology
’ Archaeology
*

"Institutional” Servers

1. Cairo University
a. "cn=Noise Reduction Coefficient,o=Noise control,o=acoustics,0=Physics, o=Natural Sciences,o= Sciences"

2. AUC
a. "cn=NRC, o=Noise control,0=acoustics,0=Physics, o=Natural Sciences,o= Sciences" (same as 1.a).

3. Ain Shams university
a. "cn=Co-Articulation,o=Phonetic Segmentation,0=Speech Segmentation,0=Speech Recognition,0=Speech
Processing,0= Audio signal processing,o0=Acoustics,0=Physics,0=Natural Sciences,o= Sciences".

[J
Windows XP Pro
Xperimenta 15 —
SLAPD*
Our System — Windows XP Pro
‘ u GuUC Our System
-Humanities
-Natural Sciences
oCS
oMath
=Pure Csommon -Algebra, Pure Math,
-App“ed S Math, NSc
oPhysics -Algoriths, CS, NSc
Windows XP Pro
JVM 1.5
SLAPD* [r—
Our System = [
-Algebra, Pure Math, Cairo
Math, NSc Univ Windows XP Pro
-Algoriths, CS, NSc JVM 1.5
SLAPD*
—_ Our System
Windows XP Pro Ain -Algebra, Pure Math,
VM 1.5 — Shams Math, NSc
SLAPD* — Univ -Algoriths, Applied
Our System Math, Math, NSc
*SLAPD is a directory server)
AU
-Algebra, Pure Math,
that adopts LDAP protocol gebra, |
-Algoriths, CS, NSc

Deployment Test

m Five machines (running Windows XP Pro) were setup and named:
Common, AUC, GUC, Cairo, and Ain Shams to represent institutional
servers. On each machine, our system plus JVM 1.5, a SLAPD (a
directory server that adopts LDAP protocol), were installed. Test data as
the hierarchy shown in section 7.3 above were fed to each machine
(each machine held servers of one university). The common machine
had the common servers, that’s to say the common part of the
taxonomy, and the other 4 machines representing the 4 universities had
the institutional servers. Then, different transactions and scenarios (e.g.
create new server, request relation, add/query resource, explore...etc.)
were fed to the system. A number of hypothetical data grids were also
registered at some servers. The Figure below shows the experimental
setup.

= An overall system testing was done to test the Integrated end-to-
end system functionality. Major functions like creating servers,
requesting relation, deepening, registering DG, discovery ofi DGs,
servers and resources, server leave, handling less relevant data
were tested and the results were recorded.

Simulation Test

m Test data was prepared for scientific research taxonomy and fed to
the system through simulation interface (all servers are created on
one physical LDAP server). Each created server represents a
‘common" server acting for a science branch. Screen shots, then,
were taken for the GUI module to show the hierarchy of servers as
built. "Institutional™ servers were suggested and test data was
created and appended to the “common" server data. Each group
of Institutional servers represents a university or a research center.
Each "institutional™ server serves a research topic in the institution
and Is hooked to the system through a “child" relation with a
"common" server. Deeper branching exists through “institutional™
Servers where no “common" servers at that depth exist.

= Server names follow the LDAP entry name convention
(Name=Value). The used LDAP server (AE SLAPD) does not
support adding new names, so, available names are used. “0="Is
used for "Common™ servers and “cn=" for “Institutional™ servers.

Functional Testing 1 — Creating The Hierarchy

Creating Servers
Creates common and institutional servers.

Create Sciences Common Sciences LocalHost %0BASEDN%o "'Science
Taxonomy"”

Create ""Natural Sciences' Common ""Natural Sciences" LocalHost
00BASEDNO% ""Natural Sciences*

Create Physics Common Physics LocalHost %BASEDN% Physics

Create Humanities Common Humanities LocalHost %6BASEDN%
Humanities

Create History Common History LocalHost %6BASEDN% History

Create ""Soclal Sciences™ Institutional **Social Sciences"™ LocalHost
0oBASEDNG%6 **Social Sciences™

Functional Testing 2 — Creating The Hierarchy

Requesting Relations
Requests Child, Same and Similar relations

= Login LocalHost o=Humanities,%BASEDN%
m RequestChild LocalHost o=Sciences,20BASEDN% ""Hi There, accept me as a child please!™

= Login LocalHost *"*o=Natural Sciences,%BASEDN%"*
m RequestChild LocalHost o=Sciences,20BASEDN% **Hi There, accept me as a child please!™

m Login LocalHost *"0=Social Sciences,%0BASEDN%"
m RequestChild LocalHost o=Sciences,%BASEDN% **Hi There, accept me as a child please!™
= RequestSame LocalHost o=Humanities,0=Sciences "*Hi There, accept me as Same please!"*

m Login LocalHost o=History,%BASEDN%

m RequestChild LocalHost o=Humanities,%BASEDN% "*Hi There, accept me as a child
please!*

m Login LocalHost o=Physics,%BASEDN%

= ReguestChild LocalHost “o=Natural Sciences,%BASEDN%"" **Hi There, accept me as a child
please!*

m Login LocalHoest o=dynamics,0=Physics,%BASEDN%

= ReguestSimilar LocalHost "o=dynamics,0o=Mathematics,0=Natural Sciences" "*Hi There,
accept me as Similar please!*

Functional Test Output 1 —The Hierarchy Created

View NHame Space

Logical Hierarchy Server Data
Ij o=5Sciences ﬂ_ﬂ ID: o=Sciences
¢ [] o=Matural Sciences E| Twpe Comimon
[o=Chemistry [Mame: Sciences
[o=Biology | ¢ 3 sServer Frofile
|j'| o=Earth Sciences |j'| Science Taxonoary
2 [] o=Mathematics ¢ [Content
o [o=Applied Mathermatics [Resources
& [T o=Pure Mathematics [Data Grids
[o=Physics ¢ [Physical Location
¢ [o=Humanities [Host LocalHost
[} o=Psychology [y DM 0=Sciences,o=Scientific Research Commurn
[o=History ‘| ¢ 3 Child Servers
[o=Law [o=Matural Sciences,o=Sciences
E| o=Demographny |j'| o=Humanities,o=5ciences
E| o=Sociology |j'| SEme Servers
E| o=Geodraphy |j'| Similar Servers
E| o=Economics :
E| o=Linguistics
E| o=Anthropoloogy
|_{“| o=Fhilosophny

Servers Representing Main Science Fields.

Functional Test Output 2 —Sub-Fields Created

Yiew Mame Space

Logical Hierarchys Server Data
—lo=Sciences] 49 ID: o=Sciences
¢ [o=Matural Sciences r [Tvpe: Comman
[o=Chemistry [Mame: Sciences
[o=Biology | ¢ 3 Server Profile
[y o=Earth Sciences [Science Taxonormy
¢ [o=Mathematics | 9 3 content
o [o=Applied Mathematics 1 [Resources
& [o=Pure Mathematics [y Data Grids
[y o=Group Theary | ¢ 3 Physical Location
[o=Trigonometry [y Host: LocalHost
[o=Geometry [DM 0=Sciences,o=Scientific Research Comrmun
[y o=order Theary | ¢ 3 child Servers
[o=Algebra [o=Matural Sciences,o=Sciences
[o=Calculus [o=Humanities,n=Sciences
[¥y o=Fractal Geometry [Same Servers
[Y o=Differential Geam| | [y sirmilar Servers
[™ o=Topology :
|j‘| o=Mumber Theory
|j‘| o=Fhvysics
4| Il |]

Pure Mathematics Sub-fields

Functional Test Output 3 — Sub-fields Created

view Name Space

Logical Hierarchys Server Data
Ij o=Sciences :|_=I IO o=5ciences
¢ [] o=Matural Sciences |j| Type: Comman
[o=Chermistry [Mame: Sciences
[o=Biology 9 [] Server Profile
|j'| o=Earth Sciences |j'| Science TaxXonormy
9 [] o=mMathematics ? [Content
e [o=Applied Mathematics [Resources
|j| o=Fluid Mechanics |__"““| Diata Grids
[y o=Probability :| ¢ =3 Physical Location
|j| o=0Dptimization |j| Haost: LocalHaost
|j| o=Mumerical Analys |j| O o=Sciences, o=5cientific Research Cammun
[o=mathermatical Eco ‘| ¢ 3 Child Servers
|j| o=Financial Mathem |j'| o=platural Sciences, o=Sciences
|j| o=Cryptography |j'| o=Hurmmanities,o=5Sciences
[o=mathermatical Biol [} ame Servers
|j| o=CGame Theory |j'| Similar Servers
|j| o=hlathematical phy :
|j| o=mMechanics

[y o=Statistics
Il

Applied Mathematics Sub-fields

Deployment Test —Deepenin

View Hame Space

[

Logical Hierarchy

Server Data

] o=R
g o=c
e [cn="y
D cr=""
D ch=2
9 3 cn=7
D ch="2
D ch="%"1
[en="rr
Y en=vyyz
9 en=vvr
9 [cn=F
D ch=Z2
D ch=Z1
o [cn=:x
D cn=x2
D cn=x1

:,Ij ID: ch=,0=R

[Type: Institutional
D Mame: X

o [Server Profile

i o= 3 Content

| & 3 Physical Location

#| &= 3 child Servers

¢ [Same Servers

H [er=v.0=C.0=R
D cn=Z,o0=C 0=R

D Similar Servers

Close

View Name Space

Logical Hierarchy

Server Data

— o=R
9 Cdo=C
P 1 en=yr
D ch="
D CR=Y"2
¢ =1 eh=x
D ch=Y2
D ch=y"1
T [cn=yr
D ch=TtrE
D ch="l
¢ CJen==
D ch=Z2
D ch=Z1
9 [ch=3
D cn=x2
D cn=x1

JE3 1D en=vo=Co=R

[Twpe: Institutional
Z D Mame:

| = =1 server Profils

| = =1 content

| = =3 Phwsical Lacation
| &= 3 child servers

| ¢ 3 same servers

B [en=x,0=R

D Similar Servers

Close

Servers Y and Z are Same to Server X

Server X is Same to Server Y

View Name Space

Logical Hierarchy

Server Data

] o=F
P Cdo=C
T cn=YN
D ch="r""1
D Cn=""2
2 [ch=y
D cn=y2
D cn=""1
9 CJ cn=vyy
[en=vrwz
Y en=vwd
2 [CJecn==
D cn=2Z2
D cn=<1
9] en=x
D Lh=32
D cn=31

31D en=%Y,0=C,0=R
D Type: Institutional
: [Marme: v
o= [Server Profile
| o= =1 content
o= [Physical Location
| = =3 child erers
9 [Same Servars
D cN=Y%Y,0=C,0=R
D ch=Z,o0=C,0=R
D Sirmilar Servers

ol

Close

View Name Space

Logical Hierarchy

Server Data

3 o=R
9 [o=C
2 [cn=vr
D cn="""1
D Ch="r2
2 [cn=v
D cn=Y2
D cn=""1
9 [CJ en=vrr
Y er=vvyz
Y en=vvvt
9 [ch=F
D ch=Z2
D cn=21
[cn=x
D ch=x2
D cn=31

JIE3 1D en=vvy,0=C,0=R
i [Type: Institutinnal
2 D Mame: ¥
i| == 3 server Profile
i o= 3 Content
#| o= 3 Physical Location
| o= 3 child Servers
e [] Same Servers
D ch=YY,0=C0=R
D Sirmilar Servers

Close

Servers YYY and Z are similar to Server YY

Server YY is similar to Server YYY

Shows the hierarchy before the deepening process

Deployment Test —Deepening (2)

Shows the hierarchy before the deepening process (Ctd.)

emMameSnace B
Logical Hierarchy Server Data
[o=R :lj ID: cn=Z,0=C,0=R

¢ [o=C E [Twpe: Institutional
=1 ch="Y 4 Mame: z
[en=vv1 | o= 3 Server Profile
[en=vrz 2| o= 3 content
[cn=Y o= [Physical Location
[y cn=v2 o= [T Child Servers
Y en=v1 i 7 I same servers
¢ [cn=vwy D cn=Y",0=C,0=R
[y en=vvvyz [en=x.0=R
Y en=vvv [y Similar Servers
¢ CJen==z H
D ch=Z2
D cn=Z1
[ch=3
D chn=x2
D cn=31

Servers YY and X are similar to Server Z

Shows the hierarchy after deepening process — deepening of common part

View Name Space =4
Logical Hierarchy Server Data
[o=R =|j 10 o=, 0=0C,0=R

] o=C 2 D Type: Common
7 en=ry : [y Mame: v
4 en=rrvz i o= 3 server Profile
Y en=vvwd o [Content
¢ =3[o=¥ | o= =3 Physical Location
[y cn=vz | o= =1 child Servers
[y en=v1 o9 1 Same Servers
Oy en=vwz i [er=vry,o=0GL0=R
Y cn=z2 [en=r,0=R
[y en=z1 5 D Sirmilar Servers
[en=v1 H
[cn=x
D cn=x2
D ch=31

New Common Server Y replacing same servers YY and Z and taking their children for itself

Deployment Test—Before Leaving

Hierarchy, Same & Similar relations before leaving

Logical Hierarchy

View Name Space s

] o=C E[j ID: eh=5,0=C
[en=s1 o [Twpe: Institutinnal
D cn=55 D Mame: 5
2 [CJen=5 o [Server Profile
[y en=sE o] Content
[en=sa | - CJ Physical Location
[en=sc #| e I child Servers
[y cn=s88 i| 9~ =3 5ame Servers
[en=s3z [cn=51,0=C

3 D ch=520=0C
i ¢ [similar Servers
D cn=550=1C
[cn=s=8,0=c

Close

Server ‘'S’ wants to leave the model

View Name Space

Logical Hierarchy

Server Data

I o=C ;r_ﬂ ID: cn=55,0=C
D chn=51 g D Type: Institutional
D cn=55 D Marme: 55
[er=sss o [Server Profile
Y cn=s52 o= [Content

o= [Physical Location

[y child Servers

D Same Servers

3 Similar Servers
[y cr=ss2,0=C

After “S” has left the Model : Only ‘SSS’ is similar to ‘SS’

View Name Space

Server Data

Logical Hierarchy

[o=C #3210 en=51,0=C
[y en=51 [Twpe: Institutional
[y cn=ss 4 Mame: 1
4 en=ss38 | & 3 Server Profile
[y en=s2 i e [Ccontent

| o= T Physical Location
i [y Child Servers

| ¢ 3 same Servers

E [en=52,0=C
D Similar Servers

After Server ‘S’ has left the Model: ‘S1’ is Same to ‘S2’ only

WView Name Space -

Logical Hierarchy

er=5] : 1D cn=5
D cn=5SC E D Type: Institutional
D ch=5A : D Marme: 5
[en=sE i| o= 3 server Profile

2| o= 3 Content

| &= 3 Phwsical Location

i| &= 3 Child Servers

: D Same Servers
D Sirmilar Servers

Close

After ‘S’ has left : it left with its children but has lost its
Same and Similar relations to the model servers

Simulation Test — Sample Output

/[Setting environment's variables
[—mmmm e
SetLog on

SetVariable %BASEDN% "o0=QueryExplore,o=Scientific Research
Community"

SetCredentials "cn=Directory Manager,0=Scientific Research
Community" secret

/l

/[Creating root entry

[== e

DeleteRoot LocalHost %BASEDN%

CreateRoot LocalHost %BASEDN%

/l

I/l Creating servers

[—mm e

Create SO Common SO LocalHost %BASEDN% "N"

Create S1 Institutional S1 LocalHost %BASEDN% " X"

Create S2 Institutional S2 LocalHost %BASEDN% "X Y"
Create S3 Institutional S3 LocalHost %BASEDN% "X Y Z"
Create S4 Institutional S4 LocalHost %BASEDN% "X Y Z P"
Create S5 Institutional S5 LocalHost %BASEDN% "XY Z P Q"
Create S6 Institutional S6 LocalHost %BASEDN% "XY ZP Q R"

Simulation Test — Sample Output

/ Building Hierarchy

e

Login LocalHost cn=S1,%BASEDN%

RequestChild LocalHost 0=S0,%BASEDN% "Hi There, accept me as a child please!"

Login LocalHost cn=S2,%BASEDN%
RequestChild LocalHost 0=S0,%BASEDN% "Hi There, accept me as a child please!"

Login LocalHost cn=S3,%BASEDN%
RequestChild LocalHost 0=S0,%BASEDN% "Hi There, accept me as a child please!"

Login LocalHost cn=S4,%BASEDN%
RequestChild LocalHost 0=S0,%BASEDN% "Hi There, accept me as a child please!"

Login LocalHost cn=S5,%BASEDN%
RequestChild LocalHost 0=S0,%BASEDN% "Hi There, accept me as a child please!"

Login LocalHost cn=S6,%BASEDN%
RequestChild LocalHost 0=S0,%BASEDN% "Hi There, accept me as a child please!"

I

/[l Exploring servers

[—mmmm e

ExploreServers X
[cn=S1,0=S0]
[cn=S2,0=S0]
[cn=S3,0=S0]

ExploreServers Y
[cn=S2,0=S0]
[cn=S3,0=S0]

ExploreServers Z
[cn=S3,0=S0]

Simulation Test — Sample Output

/[Adding resources
J] —mmm e
Login LocalHost cn=S1,%BASEDN%

AddResource XXX 24000 "11/10/96 12:20 pm" "11/10/96 12:20 pm" "J. D.
McDonald" PDF ftp://aucegypt.edu/docs/XXX.PDF

Login LocalHost cn=5S2,%BASEDN%

AddResource XXX 24000 "11/10/96 12:20 pm" "11/10/96 12:20 pm" "J. D.
McDonald" PDF ftp://aucegypt.edu/docs/XXX.PDF

Login LocalHost cn=S3,%BASEDN%

AddResource XXX 24000 "11/10/96 12:20 pm" "11/10/96 12:20 pm" "J. D.
McDonald" PDF ftp://aucegypt.edu/docs/XXX.PDF

Login LocalHost cn=54,%BASEDN%

AddResource XXX 24000 "11/10/96 12:20 pm" "11/10/96 12:20 pm" "J. D.
McDonald" PDF ftp://aucegypt.edu/docs/XXX.PDF

Login LocalHost cn=S5,%BASEDN%

AddResource XXX 24000 "11/10/96 12:20 pm" "11/10/96 12:20 pm" "J. D.
McDonald" PDF ftp://aucegypt.edu/docs/XXX.PDF

Login LocalHost cn=S6,%BASEDN%

AddResource XXX 24000 "11/10/96 12:20 pm" "11/10/96 12:20 pm" "J. D.
McDonald" PDF ftp://aucegypt.edu/docs/XXX.PDF

Simulation Test — Sample Output

/l Querying resources
I —mmmmmm -
Login LocalHost cn=S1, %BASEDN%
QueryResource XXX
[Local cn=S1,0=S0]
Il
/I Discovering resources through Same relation
I —mmmmmm -
RequestSame cn=S2,0=S0 "Hi There, accept me as Same please!"
QueryResource XXX
[Local cn=S1,0=S0]
[Same cn=S2,0=S0]
I
/I Discovering resources through Similar relations
J] =mmmm e
RequestSimilar cn=S3,0=S0 "Hi There, accept me as Similar please!"
QueryResource XXX
[Local cn=S1,0=S0]
[Same cn=S2,0=S0]
[Similar(order:1) cn=S3,0=S0]
Login LocalHost cn=S3, %BASEDN%
RequestSimilar "cn=S4,0=S0 "Hi There, accept me as Similar please!"
Login LocalHost cn=S1, %BASEDN%
QueryResource XXX
[Local cn=S1,0=S0]
[Same cn=S2,0=S0]
[Similar(order:1) cn=S3,0=S0]
[Similar(order:2) cn=S4,0=S0]

Simulation Test — Sample Output

/I Side Kick: Similar relation from Same relation

Login LocalHost cn=S2, %BASEDN%
RequestSimilar cn=S5,0=S0 "Hi There, accept me as Similar please!"

Login LocalHost cn=S1, %BASEDN%
QueryResource XXX

[Local cn=S1,0=S0]

[Same cn=S2,0=S0]

[Side Kick: cn=S5,0=S0]
[Similar(order:1) cn=S53,0=S0]
[Similar(order:2) cn=54,0=S0]

/l
// Side Kick: Same relation from Similar relation

Login LocalHost cn=54, %BASEDN%
RequestSame cn=56,0=S0 "Hi There, accept me as Same please!"

Login LocalHost cn=S1, %BASEDN%
QueryResource: XXX
[Local cn=S1,0=S0]
[Side Kick: cn=S5,0=S0]
[Same cn=S2,0=S0]
[Similar(order:1) cn=S3,0=S0]
[Side Kick: cn=56,0=S0]
[Similar(order:2) cn=54,0=S0]

Simulation Test — Sample Output

I

/[Adding data grids

[—mmm e

Login LocalHost cn=S1, %BASEDN%

I dglD ServerURL Profile Proxy Agent URL

AddDataGrid DG1 cs.aucegypt.edu "X" ftp://cs.aucegypt.edu/DG/proxyAgentl.class

Login LocalHost cn=S2, %BASEDN%
AddDataGrid DG1 cs.aucegypt.edu "X Y" ftp://cs.aucegypt.edu/DG/proxyAgent2.class

Login LocalHost cn=S3, %BASEDN%

AddDataGrid DG1 cs.aucegypt.edu "X Y Z" ftp://cs.aucegypt.edu/DG/proxyAgent3.class
1

/I Querying data grid

Login LocalHost cn=S1, %BASEDN%
QueryDataGrid DG1
[Server URL: cs.aucegypt.edu]
[Profile: X]
[Proxy Agent URL: ftp://cs.aucegypt.edu/datagrid/proxyAgentl.class]
I
/l Exploring data grids
[e
ExploreDataGrids: X
[cn=S1,0=S0 /// DG1]
[cn=S2,0=S0 /// DG2]
[cn=S3,0=S0 /// DG3]
ExploreDataGrids: Y
[cn=S2,0=S0 /// DG2]
[cn=S3,0=S0 /// DG3]
ExploreDataGrids: Z
[cn=S3,0=S0 /// DG3]

Conclusion

m The model is proven to work with almost no cost on contributors

m A by-product of the design goals (Decentralization) is the perfect performance
measures. Since a server knows nothing except its content and the coordinates
of its neighbours (parent, children, **'Same" and *"'Similar'* severs), the
operations are done faster.

m Semantics which is expressed in as the field **Ontology’* describing the server's
mission and the resource content and interests allow better resource discovery
by automating it, hence results in easier and faster resource discovery, which
in turns results in higher interoperability

m The heavy search operations are done by many servers through propagation
patterns that follow child/parent relations and/or **Same**/**Similar™ relations.
This propagation involves more servers in the search operations exponentially.

For example, at time t1 neighbours of the first server will be involved (a matter of
10 servers). At time t2, neighbours of those neighbours will be involved (a matter
of 10/ x 10 servers) and so on. This exponential invocation reduces the search time
to logarithmic cost (leg n) instead of linear cost (n, where n is number of servers).

This guarantees no bottlenecks and fast searches

Future Horizons

XML could be used to define the relations in terms of a set of standard attributes.
Hence standardizing an extensible framework for inter-server relations that
allows new kinds of relations to be added in the future

Adding new relations by third parties will create new roles for the model as per
other models' needs

Moving the complete, extensible and open messaging unit in our current design
to be a separate middleware layer or subsystem. Makes it easier for third parties
to join and collaborate using our model.

Designing a mobile agent that moves around the model to collect information
that would facilitate the future search of a specific server. This agent can be
augmented by some provisions about the future needs of its owner server that
guides its tours towards more fruitful navigations. Provisions can be stated
directly by server owners (human intelligence) or by heuristics (artificial
intelligence).

Caching is another possibility for performance enhancement in the future

	Data Grids: A Collaborative Semantic Model with Hybrid Namespace
	Outline
	Introduction
	Origin of the Computational Grid
	Virtual Organizations (VO)�
	The challenges of the Grid
	Grid middleware
	Data Grid Definition
	Architectural Aspects
	Requirements for Data Grid
	Functional Design
	Data Grid Layered Architecture
	Grid Computing Survey
	Sample Grid Projects�
	Problem Definition
	The field of Algorithms can be classified differently in different institutions
	Proposed Model
	Proposed Model
	Proposed Model (ctd.)
	Common Servers and Institutional Servers and “Same” Relation
	Utilizing “Same” relations between “Common Servers”
	Common server replacing Same Institutional Servers
	Wider Scope Collaboration
	Wider Scope Collaboration (ctd.)
	Wider Scope Collaboration (ctd.)
	Usability of the Model
	Usability of the Model (ctd.)
	Security of The Model
	The Design Goals of the Model
	Merits of the Proposed Model
	Contributions
	Measure of Success
	Design
	Design
	Design
	Design(ctd) Server Architectural Design�
	Design (ctd.): Server Functional Design
	Design (ctd.) Server Functional Design
	Design (ctd.) Server Functional Design
	Design (ctd.) Server Functional Design
	Major Server Components: Explore Server Tool
	Major Server Components: Explore Server Tool State Diagram
	Use Scenarios: Installation (Admin)
	Use Scenarios: Setup (Admin)
	Use Scenarios: Resource Discovery (users of leaf servers)
	Use Scenarios: Resource Discovery (users of leaf servers)
	Use Scenarios: Resource Discovery (Data Grid User)
	Use Scenarios: Resource Discovery (users of leaf servers)
	Use Scenarios: Leaving The Model (Admin)
	Implementation
	Implementation : GUI
	Implementation : GUI
	Implementation : GUI
	Implementation : GUI
	Implementation : GUI
	Implementation : GUI
	Implementation : GUI
	Implementation : GUI
	Testing Strategy�
	Test Data : Scientific Research Taxonomy
	Experimental Setup
	Deployment Test
	Simulation Test
	Functional Testing 1 – Creating The Hierarchy
	Functional Testing 2 – Creating The Hierarchy
	Functional Test Output 1 –The Hierarchy Created
	Functional Test Output 2 –Sub-Fields Created
	Functional Test Output 3 – Sub-fields Created
	Deployment Test –Deepening
	Deployment Test –Deepening (2)
	Deployment Test–Before Leaving
	Simulation Test – Sample Output
	Simulation Test – Sample Output
	Simulation Test – Sample Output
	Simulation Test – Sample Output
	Simulation Test – Sample Output
	Simulation Test – Sample Output
	Conclusion
	Future Horizons

