

Published in July 2007

by Academic Computer Centre CYFRONET AGH
ul. Nawojki 11, 30-950 Kraków 61, P.O. Box 386, Poland

© The Authors mentioned in the Table of Contents

All rights reserved. This book or part thereof, may not be reproduced in any form or by any means
electronic or mechanical, including photocopying, recording or any information storage and retrieval system
now known or to be invented, without written permission of the Publisher.

ISBN 978-83-915141-8-4

Cover design and book typesetting by Milena Zając.
The Editors did not interfere with the contents of material submitted by the Authors.

Organizers

Academic Computer Centre CYFRONET AGH
Institute of Nuclear Physics PAN
Institute of Computer Science, AGH

Steering Committee

Marian Bubak ACC CYFRONET AGH, Cracow
Michał Turała IFJ PAN / ACC CYFRONET AGH, Cracow
Kazimierz Wiatr ICS / ACC CYFRONET AGH, Cracow
Piotr Bała N. Copernicus University, Toruń / ICM, Warsaw
Jarek Nabrzyski PSNC, Poznań
Roman Wyrzykowski University of Technology, Częstochowa

Organizing Committee

Kazimierz Wiatr ACC CYFRONET AGH
Michał Turała IFJ PAN / ACC CYFRONET AGH
Marian Bubak ICS / ACC CYFRONET AGH

Sponsors

IST-FP6-511385 K-WfGrid

Knowledge-based Workflow System for Grid Applications
http://www.kwfgrid.eu

C O N S O R T I U M

Fraunhofer Institute for Computer
Architecture and Software Technology
(FIRST)

http://www.first.fraunhofer.de

Institute for Computer Science,
University of Innsbruck
(UIBK)

http://informatik.uibk.ac.at

Institute of Informatics of the Slovak
Academy of Sciences
(II SAS)

http://ui.sav.sk

Academic Computer Centre of the AGH
University of Science and Technology
(CYFRONET)

http://www.cyf-kr.edu.pl/en/

SINGULAR LOGIC Information
Systems & Applications S.A.

http://www.singularlogic.eu

Softeco Sismat S.p.A.

http://www.softeco.it

Preface

The Sixth Cracow Grid Workshop (CGW’06) was – as always – organized
jointly by the Academic Computer Centre CYFRONET AGH, the Institute of
Nuclear Physics PAN and the Institute of Computer Science AGH. CGW’06
was held in Cracow on the premises of IFJ PAN from 15 to 18 October 2006.
The main objective of the Cracow Grid Workshop is to create and support a
collaborative community of researchers, developers, practitioners and potential
users in Poland and in the neighbouring countries who work in the fascinating
field of Grid systems and their applications.

The CGW’06 was organized as usual as the Central European Grid Consor-
tium (CEGC) event, and comprised: keynote and invited lectures, poster ses-
sions, oral presentations and a tutorial. About 160 participants from 20 countries
took part in the Workshop. For ACC CYFRONET AGH, the CGW’06 was also
part of its activity within the framework of the many Grid projects: EGEE II,
K-WfGrid, CoreGRID, ViroLab, int.eu.grid, GREDIA, BalticGrid.

The following keynote speakers honoured the event:

• Wolfgang Boch, Head of F2, Information Society and Media DG, European
Commission,

• Fabrizio Gagliardi, Microsoft EMEA and LATAM Director for Technical
Computing, Switzerland,

• Wolfgang Gentzsch, Coordinator of D-Grid, Germany,
• Carl Kesselman, University of Southern California, Information Sciences

Institute, USA,
• Dieter Kranzlmüller, Johannes Kepler University Linz, Austria,
• Thierry Priol, INRIA, France,
• Peter Sloot, Section Computational Science, University of Amsterdam,

The Netherlands.

Invited speakers of the Workshop included:

• Piotr Ba la – representative of ICM Warsaw,
• Jarek Nabrzyski from PSNC Poznań,
• Roman Wyrzykowski from the University of Technology in Czȩstochowa,
• Pawe l Pisarczyk representing ATM. S.A.

The tutorial Principles and Practices of Grid Security was given by Syed
Naqvi, Research Fellow CoreGRID (CETIC Belgium, CCLRC UK).

More than 100 contributed papers, accepted for presentation during the
Workshop, provided a very good overview of the research activity in the area of
Grid computing. The contributed papers were reviewed by the Steering Commit-
tee upon submission of abstracts, then during their presentations at the event,
and, finally, after submission of full versions. These papers give a very good
overview of the research activity in the following fields of Grid computing:

• grid projects,
• workflows,

• semantics in the grid systems,
• resource management,
• monitoring,
• data management,
• Grid middleware,
• security,
• software development,
• applications.

The Proceedings of CGW’06 are splitted into two volumes; in this second
one we have collected all papers submitted by the EU IST Project K-WfGrid –

Knowledge-based Workflow System for Grid Applications.
We would like to express our gratitude to Prof. Marek Jeżabek, Director of

the Institute of Nuclear Physics, and Prof. Krzysztof Zieliński, Director of the
Institute of Computer Science AGH for their help and personal involvement.
We owe thanks to the Workshop sponsors: Intel, HP and ATM S.A. Poland for
generous support.

We are also indebted to all the members of the Workshop Secretariat (Zofia
Mosurska, Maria Stawiarska, Milena Zaja̧c) and other colleagues from ACC
CYFRONET AGH (Teresa Ozga, Mieczys law Pilipczuk, Andrzej Oziȩb lo) for
organizing the event. Special thanks go to Milena Zaja̧c for her hard work on
preparation of the Proceedings for printing.

We kindly invite you to visit the Web page of the Cracow Grid Workshop
(http://www.cyfronet.krakow.pl/cgw06/) and, of course, to participate in
CGW’07 in October 2007.

Cracow, July 2007
Marian Bubak
Micha l Tura la
Kazimierz Wiatr

Table of Contents

K-WfGrid – Knowledge-Based Workflow System for Grid Applications 1
M. Bubak, P. Nowakowski, and S. Unger

Grid Workflow Execution Service – Dynamic and Interactive Execution
and Visualization of Distributed Workflows . 13
A. Hoheisel

Constructing Abstract Workflows of Applications with Workflow
Composition Tool . 25
T. Guba la, D. Harezlak, M. Bubak, and M. Malawski

Automatic Application Builder – Tool for Automatic Service Selection 31
L. Dutka, J. Kitowski, and S. Natanek

K-WfGrid Scheduler – Scheduling Grid Workflows Based on Prediction
and Performance Knowledge . 39
M. Wieczorek, and T. Fahringer

DIPAS: Performance Analysis and Visualization Support
for Grid Workflows . 48
H.-L. Truong, T. Fahringer, P. Brunner, R. Samborski, and V. Nae

GEMINI: Generic Monitoring Infrastructure for Grid Resources
and Applications . 60
B. Balis, M. Bubak, and B. Labno

Grid Organizational Memory – Semantic Framework for Metadata
Management in the Grid . 74
B. Kryza, J. Pieczykolan, M. Majewska, R. Slota, M. Babik,

A. Toth, J. Kitowski, and L. Hluchy

On Translation Common Information Model to OWL Ontology 82
M. Majewska, B. Kryza, and J. Kitowski

Peer-to-Peer Distribution Model for Grid Organizational Memory
Knowledge Base . 90
B. Kryza, J. Pieczykolan, J. Wach, M. Zuzek, and J. Kitowski

TeToN – a Jena-Based Tool for Text-to-Ontology Approach 98
M. Kuta, S. Polak, B. Palacz, T. Mi loś, R. S lota, and J. Kitowski

OnTal – the Tool for Ontology Extension in Knowledge-Based
Grid Systems . 106
R. Slota, J. Zieba, M. Janusz, and J. Kitowski

Knowledge Assimilation Agent – Component for Workflow-Based Grid
Service Performance Prediction, Workflow Result Estimation and
Semi-Autonomic Service Discovery . 114
Z. Balogh, M. Šeleng, M. Malǐska, L. Hluchý, R. Slota, J. Zieba,

and J. Kitowski

User Assistant Agent: Towards Collaboration and Knowledge
Sharing in Grid Workflow Applications . 122
M. Laclav́ık, M. Šeleng, and L. Hluchý

K-Wf Grid Portal: a Web Interface to Semantic Workflows 131
E. Gatial, B. Simo, G. Nguyen, M. Laclavik, L. Hluchý, T. Linden,

and B. Kryza

Service-Based Flood Forecasting Simulation Cascade in K-Wf Grid 138
O. Habala, M. Malǐska, and L. Hluchý

Application of K-Wf Grid Technology to Coordinated Traffic Management 146
M. Masetti, S. Bianchi, and G. Viano

The Potentials of Knowledge-Based Workflows and Grid
Infrastructures in an ERP Environment: The K-Wf Grid Experience 154
S. Pantelopoulos, and K. Kalaboukas

Software Engineering Aspects of K-WfGrid . 162
M. Bubak, M. Malawski, P. Nowakowski, and S. Unger

Author Index .171

K-WfGrid – Knowledge-Based Workflow System

for Grid Applications

Marian Bubak1,2, Piotr Nowakowski2, and Steffen Unger3

1 Institute of Computer Science AGH,
al. Mickiewicza 30, PL-30-059 Kraków, Poland

2 Academic Computer Centre CYFRONET AGH,
ul. Nawojki 11, 30-950 Kraków, Poland

3 Fraunhofer Institute for Computer Architecture and Software Technology (FIRST),
Kekulestr. 7, D-12489 Berlin, Germany

Abstract

The IST FP6-511385 STREP Project K-WfGrid “Knowledge-based
Workflow System for Grid Applications” addresses the need for a bet-
ter infrastructure for the future Grid environment. The Grid as a vast
space of partially-cooperating, partially-competing Grid services will
be a very dynamic and complex environment. In order to address the
complexity in using and controlling the next generation Grid, the Con-
sortium adopted the approaches envisioned by semantic Web and Grid
communities in a novel, generic infrastructure.
The K-WfGrid system assists its users in composing powerful Grid
workflows by means of a rule-based expert system. All interactions
with the Grid environment are monitored and evaluated. Knowledge
about the Grid itself is mined and reused in the process of workflow con-
struction, service selection and Grid behaviour prediction. Workflows
are dynamic and fault-tolerant beyond the current state of the art. The
K-WfGrid system is generic by providing domain-independent system
components, freeing the user from the burden of complex Grid usage
and maintenance. Specific application knowledge is added in a cus-
tomization phase carried out by system integrators including SMEs.
This generality was demonstrated by applying K-WfGrid in three dif-
ferent application domains regarding scientific simulations (flood fore-
casting simulation) as well as industrial applications (ERP and traffic
management).
The project started in September 2004 and concluded in February 2007.

Keywords: Grid, workflow system, knowledge, ontologies, monitoring,
performance analysis, pilot applications

1 Motivation

The main challenge for the Knowledge-based Workflow System for Grid Appli-
cations (K-WfGrid) [1] is to enable the knowledge-based support of workflow
construction and execution in a Grid computing environment.

In order to achieve this objective the Consortium developed a system that
enables users to:

• semi-automatically compose a workflow of Grid services,
• execute the composed workflow application in a Grid computing environ-

ment,
• monitor the performance of the Grid infrastructure and the Grid applica-

tions,
• analyze the resulting monitoring information,
• capture the knowledge that is contained in the information by means of

intelligent agents,
• and finally to reuse the joined knowledge gathered from all participating

users in a collaborative way in order to efficiently construct workflows for
new Grid applications.

2 K-WfGrid Architecture

K-WfGrid undertook research using the latest achievements in Grid and se-
mantic web technologies to facilitate the dynamic construction and execution of
knowledge-based workflows in Grid environments.

K-WfGrid defines “workflow” as “the automation of distributed IT processes
– in whole or part – during which documents, information or tasks are passed
from one participant to another for action, according to semantic description of
available resources and information gathered by their monitoring”.

K-WfGrid developed technology to compose Grid workflows automatically on
the basis of the desired output and of the description of Grid resources available:
services are invoked in the correct order and fed the correct data so that the
results are compliant with the specification and that only the most optimal
resources are used.

The architecture (Fig. 1) is composed of four horizontal layers and the vertical
knowledge layer. Each horizontal layer communicates only with the proximate
layers so that single layers can be modified or replaced without changing the
whole system [1].

3 Workflow Orchestration and Execution Environment

The main innovation of the Workflow Orchestration and Execution Environment
[2] is the multi-level approach to application workflow modelling. The idea is to
introduce several layers of abstraction for a workflow and to provide the end user
with a set of tools that help to compose, refine and execute such workflow. While
the tools are usually dedicated to operate on a specified abstraction level, the
language that models the workflow structure and behaviour on every defined level
is the main integrating element of the Environment. The language is based on
the idea of High-Level Petri Nets (HLPN) and expresses additional information
regarding its elements through colour code. As all workflow abstraction levels
are described by the same description language it is possible that one single
workflow contains abstract as well as concrete parts at the same time. This

Fig. 1: K-WfGrid layered architecture.

enables the workflow orchestration system to be highly dynamic and to react on
changes in an unreliable Grid environment.

Thus, the main innovations of the K-WfGrid workflow management tech-
nology are: support of dynamic workflows, interaction between the workflow
orchestration and execution process, application of an expert system for sup-
porting knowledge-based workflow orchestration and Grid Service selection and
support of several levels of abstraction within one Grid workflow description
language.

4 Workflow Composition Tool (WCT)

In the context of the K-WfGrid framework, WCT [3] provides Grid Workflow
Execution Service (GWES) with the ability to refine initial, very raw workflows
into abstract but complete solutions that may be further concretised and finally
executed/scheduled.

The tool contacts the ontological registry (Grid Organization Memory) in
order to find suitable service operations that may produce the required result.
The services are described in an ontological form with statements regarding
the service operations’ inputs, outputs, preconditions and effects (the IOPE

set). Through these notions the tool that composes workflows is able to match
different operations into a workflow.

By associating the required data with the produced output the tool con-
structs a data flow between operations containing abstract, domain-specific classes
of services. As those operation types are meaningful for a domain expert user,
this level of abstraction of a workflow ensures that the application logic is valid.
It, however, lacks any implementation and instance-specific details so it is in-
vulnerable to the frequent changes in the Grid environment and allows for the
workflow reuse capability.

5 Automatic Application Builder (AAB)

AAB [4] is supported by Semantic Information in order to automatically convert
abstract workflows into real ones (abstract workflows specify only a recipe for
providing the expected solution; the real workflow consists of service instances
deployed in the Grid).

AAB exploits the knowledge about the Grid world gathered in GOM for this
automatic construction. It is integrated with the workflow editor used for passing
user preferences specified trough User Interface. These user preferences can be
exploited during the service selection. The AAB is deployed as web service and
the implementation of the AAB client uses web services.

6 Scheduler

The K-WfGrid scheduler [5] is a performance-oriented workflow Grid scheduler,
which makes workflows concrete and prepares them for execution. It recognizes
the Petri nets model by which the workflows are represented, and creates a
schedule only for those workflow nodes which have been prepared for scheduling
by other services (only for “blue” nodes, in terms of K-WfGrid). Since the
scheduler is aware of the current workflow execution status, it can be applied
dynamically many times during a single workflow execution (dynamic scheduling
model).

The scheduler uses the information acquired from the Monitoring Service,
concerning the infrastructure as well as the service execution. Monitoring infor-
mation is used to choose the most appropriate resources for the execution of the
workflow. It will also use knowledge-based performance predictions to approxi-
mate the execution time of services and therefore to improve the scheduling.

It shows that the information collected and processed by the services of
K-WfGrid can be applied in practice as a positive feedback to enhance the
performance of the environment.

7 Distributed Performance Analysis Service (DIPAS)

DIPAS [6] helps the user and the developer to understand the performance be-
haviours of their Grid workflows and infrastructure and to find the cause of

failures and performance problems by analyzing Grid services and resources and
their complex dependencies at runtime. It includes a set of novel techniques for
supporting workflow overheads analysis, performance visualization and perfor-
mance search on the fly. DIPAS provides a performance analysis service and
a Web portal for conducting the performance monitoring and analysis of Grid
workflows and infrastructure. Moreover, the middleware services also benefit
from using DIPAS as it provides performance knowledge for constructing and
executing workflows.

The main achievements are:

• the design and implementation of a comprehensive, unified, extensible per-
formance analysis of Web services-based workflows,

• novel request representations alleviate the interaction between performance
services and their clients,

• performance of Grid workflows is systematically analyzed according to a
classification of workflow overheads, and performance problems can be
detected online by interpreting performance metrics at runtime.

8 Generic Monitoring Infrastructure (GEMINI)

GEMINI [7] is a generic monitoring system that supports online monitoring of
Grid infrastructure and applications. Part of GEMINI is a sensor infrastruc-
ture which allows for easy dynamic deployment of new data sources into the
monitoring infrastructure. In contrast to available solutions, GEMINI focuses
on a comprehensive support for on-line monitoring of Grid workflows including
semi-dynamic instrumentation.

Users of GEMINI interact with it through two interfaces exposed as web
services:

• monitoring interface based on PDQS (Performance Data Query Subscribe)
language,

• instrumentation interface based on WIRL (Workflow Instrumentation Re-
quest Language).

Through the monitoring interface, one can obtain monitoring data by query-
ing it to obtain results immediately or subscribing it to receive a data stream
for a specified period of time. The instrumentation interface is used to control
the instrumentation of applications, which is a necessary step before monitoring
of applications is possible. Through this interface, one can request a high-level
abstract representation of the application called SIRWF (Standard Intermediate
Representation for Workflows) which allows identifying the parts of applica-
tions to be instrumented and specify the corresponding metrics (e.g. start/end
events). Once code regions and metrics are identified, a request to enable or
disable the instrumentation can be issued. With the described instrumentation
approach, various heterogeneous parts of a workflow (services based on differ-
ent programming languages, code regions, invoked legacy codes) are viewed in
a common way, while underlying different instrumentation systems, needed to

deal with the different workflow parts, are integrated and hidden behind common
interfaces.

9 Grid Organizational Memory (GOM)

Grid Organizational Memory [8] is a distributed knowledge base designed to
manage semantic metadata about all kinds of resources available in a Grid en-
vironment including the application domains to which the Grid is applied.

GOM uses a set of defined generic ontologies in order to provide common un-
derstanding for both users and other middleware components and allows appli-
cation developers to extend these ontologies with their domain specific concepts
and thus provide additional meaning to the workflow elements [9]. Availability
of rich semantic descriptions of such elements as data or services is of crucial
importance for the workflow composition components.

The main achievements are:

• the definition of the unified semantic metadata model of the Grid called
ontology separation scheme,

• design and development of a generic distributed knowledge base [10] with
an event system enabling updating of managed ontologies and recovery
of the state of the knowledge base from any given time in the past from
serialized history of incoming events,

• development of Protege plug-in that enable easy interaction with the know-
ledge base.

GOM along with its accompanying tools (e.g., tool for semantic description
of available services or Graphical User Interface access to GOM) [11,12] provides
versatile functionality for deploying and managing ontological knowledge bases
in any Grid environment. The easy extensibility and multiple configuration
options of the knowledge base provide also high adaptability of the system to
various settings and applications.

10 Knowledge Assimilation Agent (KAA)

Knowledge Assimilation Agent (KAA) [13] is a knowledge-based component for
Grid service workflows, which comprises three basic functionalities:

• assimilates run-time information about Grid services from different sources
and produces performance estimations of future Grid service invocations
(the KAA-Web Service),

• performs past workflow analysis and produces workflow result estimations
(the KAA-WXA tool),

• discovers new potential services through interactive semi-automatic onto-
logy alignment (the OnTal tool).

The main achievements include the ability of estimation of Grid service per-
formance measures (run-time, availability, accessibility, etc.) based on the invo-

cation parameters and input resource metadata and semi-automatic extension
of the knowledge base by ontology evolution methods.

The main scientific innovations of KAA are extension of instance based lear-
ning (IBL) technique of WS performance prediction by enabling retrieval and
inclusion of semantic resource properties into the feature vector, enabling speci-
fication of WS performance prediction profiles which specify feature vector and
result to be estimated, and proposition of a novel ontology for IBL-based WS
performance prediction together with methodology extending the classical Case-
Based Reasoning. Development of knowledge extension by ontology evolution
using a combination of lexical and structured similarity and considering neigh-
bourhoods of two ontology concepts when their similarity is assessed is another
achievement of KAA in the context of workflow construction for grid applica-
tions. Development of knowledge extension by ontology evolution using a com-
bination of lexical and structured similarity and considering neighbourhoods of
two ontology concepts when their similarity is assessed is another achievement
of KAA in the context of workflow construction for grid applications.

11 User Assistant Agent (UAA)

The User Assistant Agent [14] helps users in collaboration and knowledge shar-
ing in Grid workflow applications. The key idea is that a user enters notes in
a particular situation/context, which can be detected by the computer. Such
notes are later displayed to other or the same users in a similar situation/context.
The context of user is detected from computerized tasks performed by user. Also
intelligent components in the grid middleware such as monitoring, workflow anal-
ysis or workflow composition can provide context sensitive notes to be displayed
for the user. In the K-WfGrid, grid services are semi-automatically composed to
workflows, which should solve a user problem. It was identified that even when
services and input and output data are well semantically described, there is of-
ten no possibility to compose an appropriate workflow e.g. because of missing
specific input data or fulfilment of a user and application specific requirement.
To help user in workflow construction, problem specification or knowledge reuse
from past runs it is appropriate to display notes and suggestions entered by users
or intelligent middleware components. Thus experts can collaborate and fill up
application specific knowledge base with useful knowledge, which is shown to
users at the right time.

12 User Environment Interface

The User Environment Interface (UI) [15] is the main access point for K-WfGrid,
which is available as a web portal, reachable from anywhere in the world using
the Internet. It is a set of portable JSR-168 portlets, deployed in a standard
portlet container. These portlets access specific parts of K-WfGrid middleware,
grid data storage, and application components. Together, they allow users to:

• create and manage application workflows

• access, view, and modify knowledge available to K-WfGrid components
• upload data files into the grid, and download them from the grid
• access, and create new text notes, and manage user experience
• debug K-WfGrid and application components using integrated log viewer
• communicate with each other
• view, and reuse recent application workflows.

The UI is easily extensible with additional portlets, and all existing portlets
may be arranged into different sets, targeting different user groups. Also, it
enables user collaboration in execution of application workflows, as well as in
the task of application development, debugging, and deployment. It is a central
K-WfGrid-wide integration point.

13 The Pilot Applications

In the context of the K-WfGrid project, pilot applications are testbeds meant
to verify the possibility to apply the solutions developed in some real contexts
and to evaluate the impact and the value added provided by the middleware.
In this sense, they can be assumed as proof-of-concepts in different scenarios,
with the aim at verifying the applicability of a research-oriented approach in
actual applications. As well as for technical test, pilot applications constitute
pre-competitive solution examples to real problems and are useful for an early
detection of problems related to future exploitation, e.g. how a K-WfGrid-based
solution can be designed, which requirements are related to the adoption of the
middleware, which constraints this implies etc.

The Flood Forecasting Simulation Cascade [16] predicts flooding sce-
narios using a series of meteorological, hydrological and hydraulic simulations.
In the following, a generic problem is illustrated, and then solutions by standard
Grid system and by the K-WfGrid system are compared.

A national emergency management agency tries to evaluate possible risks
of flooding of a certain area, as weather worsens and heavy rain continues for
several days in large part of the country. The emergency management agency
is working closely with one or more meteorological institutes, and also with
local river authorities. Each of these organizations has its own set of machines
for simulation of their respective problems – weather prediction, hydrology, or
hydraulics. Each of these organizations has also their experts who work with the
sophisticated programs that run these simulations, and who are able to utilize
them in optimal way.

The standard solution for this problem is to construct a complicated virtual
organization (VO) structure for this effort, and to maintain this VO constantly.
In order to do this, a coordination centre has to be selected, which will man-
age the VO. A management hierarchy is designed, with a board of appointed
directors for each participating institution. A separate, dedicated security and
certification body is appointed with guarding the VO’s resources. Each partici-
pant of the VO dedicates certain volume of computation and storage resources,
based on their level of participation in the VO, and on their abilities. This ma-

chinery is constantly maintained, upgraded, augmented, evaluated, monitored,
updated, observed, and guarded.

With K-WfGrid system the level of integration may be lower, without com-
promising the efficiency of the system. This is mainly due to the sophisticated
semantics-based knowledge management system, which stores perceived events
and is able to learn from them, or at least bring them up to the user when they
may guide him/her. Instead of constantly maintaining the system in semi-ready
order, the whole infrastructure can “power down”, divert to different tasks, and
“power up” quickly, without loss of efficiency, when needed. Also, the used
web and grid standards make it easier to add yet more services to the system.
This system allows simple incorporation of accounting into the organization, so
generic computation power providers, storage centers and communication net-
works may provide their services to the specialized data and code providers, to
mutual benefit.

In the case of Coordinated Traffic Management [17] the adoption of
K-WfGrid in a public organization – such as the Mobility Department of the Mu-
nicipality of Genoa – was investigated to point out which possible advantages a
K-WfGrid-based system could offer in support of or even as a valid alternative to
the current solutions (provided that Service Oriented Architecture and Grid web
services are adopted as main technologies). The correct approach for a valuable
evaluation of the K-WfGrid in the context of Coordinated Traffic Management
moved therefore from “what can be done in this context now with K-WfGrid
(that was undoable before)”, to “what will K-WfGrid allow in this context once
a Grid (or SOA) architecture will be adopted”. K-WfGrid in fact enables the
adoption and effective exploitation on top of other technologies, whose adoption
is therefore a necessary requirement.

Enterprise Resource Planning [18] as current enterprise environment is
characterized by rapid changes and fuzzy networks of inter-enterprise correla-
tions and dependencies, the effective decision making, which constitutes crucial
factors concerning the company positioning and competitiveness in the enter-
prise environment, requires computation- and data- intensive tasks due to the
complexity of the supporting algorithms and the massive storage of enterprise
data. In addition, the enterprise employees, who are the real ERP users, demand
fast access to machine processed enterprise data so as to support efficiently and
execute effectively back-office business processes, leading to the faster delivery
of vital information, to the optimization of the enterprise performance and to
the enhancement of customers’ satisfaction.

K-WfGrid approach and platform a) allows semantically-assisted search, dis-
covery and selection of appropriate tasks/services, stored in services repository
that could typically contain some hundreds of services, with their desired func-
tionality in order to compose a business-driven e-workflow and to establish con-
nections among these tasks (control and data flow); b) allows the user to identify,
at design time, the operational metrics of discovered services and grid resources,
including timeliness, quality of products delivered, cost of service, and reliabil-
ity, facilitating, thus, the composition of optimized grid-enabled e-workflows;

c) supports the semi-automated generation, storage, and reuse of business e-
workflows with a level of parameterization; d) shortens calculation time of data-
and computation- intensive business-driven ERP-based processes, and improves
enterprise competitiveness delivering instantly high quality computations; and
e) enables simple ERP users, with no experience in grid computing and workflow
management, to benefit from the emerging Grid-enabled Service Oriented Com-
puting by offering user-friendly interfaces to a complex Grid-based environment.

14 Achievements

The main scientific and technical achievements of the K-WfGrid project are the
following:

• A multi-level approach to application workflow modeling based on intro-
duction of several layers of abstraction for a workflow,

• Domain-oriented semantic descriptions of basic organizational resources,
applied to automatic construction of complex Grid application workflows,

• A scheduler for Grid application workflows, able to select between seman-
tically equivalent services,

• A generic monitoring framework that integrates various types of monitor-
ing information described in a common data representation and available
through a standardized monitoring interface, particularly useful for moni-
toring of Grid workflows,

• A set of novel techniques for online performance execution tracing, work-
flow performance overhead analysis and search for performance problems
of Grid workflows at multiple levels of abstraction,

• A framework for reuse of past knowledge for future workflow construction,
• An architecture and knowledge model for collaboration and knowledge

sharing in a context sensitive environment, including advanced methods
for user context and knowledge context matching,

• An abstract ontological description of the functionality of a Grid environ-
ment, expressed as the Grid Organizational Memory,

• A suite of end-user tools, capable of supporting the above goals.

By using K-WfGrid tools the user can construct and execute application
workflows according to recommendations offered by a dedicated UI, store work-
flow history and convert abstract workflows into real ones, monitor the perfor-
menace of the Grid through a monitoring and analysis system, reuse workflow-
specific knowledge assimilated through the Grid Organizational Memory.

The scientific results of K-WfGrid have been published in about 100 papers in
Future Generation of Computer Systems, Journal of Grid Computing, Concur-
rency and Computation: Practice and Experience, Computer and Informatics,
Springer Lecture Notes in Computer Science, IEEE Computer Press, and in
Proceedings of Cracow Grid Workshop.

15 Availability of Results

The K-WfGrid system is a connection of several interoperating modules [19].
Some of these modules may be operated separately, some are only supporting
modules for others, and some need support of other modules to work correctly.
The source code is freely available for non-commercial use. Several components
require additional license agreements for commercial use. Project results are
available for downloading under the respective section downloads of the project
web site [1].

16 Partners

The Fraunhofer Institute for Computer Architecture and Software

Technology, Berlin, is an institute of the Fraunhofer Gesellschaft, the leading
German research organization for applied research that drives economic develop-
ment and serves the wider benefit of the society. The institute coordinated the
project, supported by the Fraunhofer contract and financial departments, and
was responsible, in particular, for the design and implementation of the Grid
Workflow Execution System.

The Institute for Computer Science, University of Innsbruck, is
working at the cutting edge of performance monitoring, analysis and predic-
tion. Its work in the K-WfGrid project concentrated on performance analysis,
interfaces and data representation as well as scheduling for Grid workflow appli-
cations.

The Institute of Informatics of the Slovak Academy of Sciences,
Bratislava, has extensive experience in scientific computing, knowledge descrip-
tion and management and interactive tool design and implementation. It was
responsible for components performing knowledge gathering and components al-
lowing its reuse. Also, it led the testbed construction and pilot applications
implementation.

The core domain of work of Academic Computer Centre CYFRONET

of the AGH University of Science, Cracow, is the Grid Organizational
Memory, definition and implementation of ontologies to describe and enable
reuse of the gathered information from the different sources and sensors. ACC
CYFRONET was responsible for scientific coordination and participated also in
the development of workflow orchestration and monitoring activities.

The two SMEs in the project were: SingularLogic S.A., Athens, Greece,
one of the largest IT software houses in Greece, and Softeco Sismat S.p.A.,
Genova, Italy – a major supplier of software and automation systems for indus-
try and research partners operating in complex environments with advanced IT
methodologies.

Both acted as active contributors to the scientific development, in particular,
in metadata and ontology domain and providers of pilot application examples,
and led dissemination and exploitation activities.

References

1. K-WfGrid web site: http://www.kwfgrid.eu

2. A. Hoheisel; Grid Workflow Execution Service – Dynamic and Interactive Execu-
tion and Visualization of Distributed Workflows, Proc. CGW’06, vol.II, pp. 13-24

3. T. Guba la, D. Harezlak, M. Bubak, and M. Malawski; Constructing Abstract
Workflows of Applications with Workflow Composition Tool, Proc. CGW’06,
vol.II, pp. 25-30

4. L. Dutka, J. Kitowski, and S. Natanek; Automatic Application Builder – Tool for
Automatic Service Selection, Proc. CGW’06, vol.II, pp. 31-38

5. M. Wieczorek, and T. Fahringer; K-WfGrid Scheduler – Scheduling Grid Work-
flows Based on Prediction and Performance Knowledge, Proc. CGW’06, vol.II,
pp. 39-47

6. H.-L. Truong, T. Fahringer, P. Brunner, R. Samborski, and V. Nae; DIPAS: Per-
formance Analysis and Visualization Support for Grid Workflows, Proc. CGW’06,
vol.II, pp. 48-59

7. B. Balis, M. Bubak, and B. Labno; GEMINI: Generic Monitoring Infrastructure
for Grid Resources and Applications, Proc. CGW’06, vol.II, pp. 60-73

8. B. Kryza, J. Pieczykolan, M. Majewska, R. Slota, M. Babik, A. Toth, J. Kitowski,
and L. Hluchy; Grid Organizational Memory – Semantic Framework for Metadata
Management in the Grid, Proc. CGW’06, vol.II, pp. 74-81

9. M. Majewska, B. Kryza, and J. Kitowski; On Translation Common Information
Model to OWL Ontology, Proc. CGW’06, vol.II, pp. 82-89

10. B. Kryza, J. Pieczykolan, J. Wach, M. Zuzek, and J. Kitowski; Peer-to-Peer
Distribution Model for Grid Organizational Memory Knowledge Base, Proc.
CGW’06, vol.II, pp. 90-95

11. M. Kuta, S. Polak, B. Palacz, T. Mi loś, R. S lota, and J. Kitowski; TeToN –
a Jena-Based Tool for Text-to-Ontology Approach, Proc. CGW’06, vol.II, pp.
96-105

12. R. Slota, J. Zieba, M. Janusz, and J. Kitowski; OnTal – the Tool for Ontology
Extension in Knowledge-Based Grid Systems, Proc. CGW’06, vol.II, pp. 106-113

13. Z. Balogh, M. Šeleng, M. Malǐska, L. Hluchý, R. Slota, J. Zieba, and J. Kitowski;
Knowledge Assimilation Agent – Component for Workflow-Based Grid Service
Performance Prediction, Workflow Result Estimation and Semi-Autonomic Ser-
vice Discovery, Proc. CGW’06, vol.II, pp. 114-121

14. M. Laclav́ık, M. Šeleng, and L. Hluchý; User Assistant Agent: Towards Collab-
oration and Knowledge Sharing in Grid Workflow Applications, Proc. CGW’06,
vol.II, pp. 122-130

15. E. Gatial, B. Simo, G. Nguyen, M. Laclavik, L. Hluchý, T. Linden, and B. Kryza;
K-Wf Grid Portal: a Web Interface to Semantic Workflows, Proc. CGW’06, vol.II,
pp. 131-137

16. O. Habala, M. Malǐska, and L. Hluchý; Service-Based Flood Forecasting Simula-
tion Cascade in K-Wf Grid, Proc. CGW’06, vol.II, pp. 138-145

17. M. Masetti, S. Bianchi, and G. Viano; Application of K-Wf Grid Technology to
Coordinated Traffic Management, Proc. CGW’06, vol.II, pp. 146-153

18. S. Pantelopoulos, and K. Kalaboukas; The Potentials of Knowledge-Based Work-
flows and Grid Infrastructures in an ERP Environment: The K-WfGrid Experi-
ence, Proc. CGW’06, vol.II, pp. 154-161

19. M. Bubak, M. Malawski, P. Nowakowski, and S. Unger; Software Engineering
Aspects of K-WfGrid, Proc. CGW’06, vol.II, pp. 162-169

Grid Workflow Execution Service – Dynamic

and Interactive Execution and Visualization of

Distributed Workflows

Andreas Hoheisel

Fraunhofer Institute for Computer Architecture and Software Technology,
Berlin, Germany

email: andreas.hoheisel@first.fraunhofer.de

Abstract

The main objective of Grid workflows is the automation of complex IT
processes in Grid environments. This article describes the Grid work-
flow execution environment of the K-Wf Grid project, which consists
of several system components, such as the Grid Workflow Execution

Service, the Grid Workflow User Interface, and the Grid Workflow De-

scription Language that is based on high-level Petri Nets and which is
able to model the data flow as well as the control flow within a single
formalism. A unique feature of the solution is the completely virtu-
alized resource allocation based on abstract modeling of the process
structure and the powerful resource description formalism. The user
is able to invoke workflows without any knowledge of underlying hard-
ware and software specifics, allowing to concentrate on the real focus
of the work.

1 Introduction

Executing complex processes in heterogeneous distributed computing environ-
ments is a major goal in applying Information and Communication Technologies
in industry and science. While several tools are established in the market for
modeling pure business processes, until now only few products support process
execution in Grid environments. They are applicable mostly to restricted cate-
gories of processes. Often, they also require user knowledge about the underlying
platforms and software components.

The Grid Workflow Execution Service (GWES) is the workflow enactment
engine of the K-Wf Grid system [16], which coordinates the composition and
execution process of Grid workflows. It implements a highly dynamic workflow
concept [8], [14] by means of the Grid Workflow Description Language (GWork-
flowDL) [1], [3], [4], which is based upon the theory of high-level Petri Nets
[9]. It provides interfaces to the Web Portal and to a command line client for
user interaction as well as to the low-level Grid Middleware for the invocation
of application operations.

The main purpose of the Grid Workflow Execution Service and its client
interfaces is to enable users to automatically execute workflows on distributed
resources without being bothered with implementation-specific details, putting

more attention to the functionality of the workflow itself. Therefore, the Grid

Workflow Execution Service provides methods to initiate and analyze Grid work-
flows, and to coordinate and optimize the execution of these workflows on dis-
tributed and inhomogeneous resources regarding the control as well as the data
flow. Abstract operations are automatically mapped onto matching software
and hardware resources, triggering web service operations, remote executions of
programs, or file transfers. The workflow service supports pure Web Services
and Globus Toolkit 4 and is easily extendible for further execution platforms,
such as UNICORE, Condor, GRIA, and SUN Grid Engine, allowing the reuse
of existing workflows on different Grid middleware.

The following Section 2 describes the concept and the formalism of the Grid

Workflow Description Language which is the basis for most of the components of
the K-Wf Grid project. Section 3 then focuses on the concept, implementation
and deployment of the Grid Workflow Execution Service. The interactive web-
based visualization of the workflows is the topic of Section 4. Section 6 gives
a brief overview of some of the applications and projects that currently make
use of the Grid workflow execution environment. The article closes with the
conclusions in Section 5.

2 Workflow Description

The basis for the workflow management is the Grid Workflow Description Lan-

guage (GWorkflowDL), which is a Petri Net-based standard for describing work-
flows using XML. For the features and the specification of the Grid Workflow
Description Language, please refer to the GWorkflowDL software development
site at http://www.gridworkflow.org/gworkflowdl/. The workflow concept
supports several levels of abstraction within one workflow description language,
it is simple but universal (in the sense of being Turing complete), it supports data
as well as control flow, and it enables dynamic workflows where the structure of
the workflow may change during runtime. This section explains the underlying
workflow concept and formalism.

2.1 High-Level Petri Nets

In 1962, C.A. Petri introduced in his Ph.D. thesis [20] a formalism for describing
distributed processes by extending state machines with a notion of concurrency.
Due to the simple and intuitive, but at the same time formal and expressive
nature of his formalism, Petri Nets became an established tool for modeling
and analyzing distributed processes in business as well as in the IT sector. A
Petri Net is one of several mathematical representations of discrete distributed
systems. As a modeling language, it graphically depicts the structure of a dis-
tributed system as a directed bipartite graph with annotations. As such, a Petri
Net has place nodes, transition nodes, and directed edges connecting places with
transitions. If one abstracts from capacity constraints, Petri Nets are Turing
complete. There exist several different types of Petri Nets. A common classi-

fication is based on a survey by [5], who distinguishes between three levels of
Petri Nets:

• Level 1: Petri Nets characterized by places that can represent Boolean
values; i.e., a place is marked by at most one unstructured token. Examples
of level 1 nets are Condition/Event (C/E) systems, Elementary Net (EN)
systems, and State Machines (SM).

• Level 2: Petri Nets characterized by places that can represent integer val-
ues; i.e., a place is marked by a number of unstructured tokens. Examples
of level 2 nets are Place/Transition (P/T) nets, ordinary Petri Nets (PNs),
and Free Choice Nets.

• Level 3: Petri Nets characterized by places that can represent high-level
values; i.e., a place is marked by a multiset of structured tokens. Examples
of level 3 nets are Colored Petri Nets (CPNs) and High-Level Petri Nets
(HLPNs).

The tokens of a level 1 or level 2 net are unstructured (not distinguishable),
so they do not carry any information besides their existence and number. These
nets are used to describe basic control and data flows but are not suitable to
model the data themselves. The tokens of a level 3 net, however, can be used
directly in order to store the exit status (control data) or to model the input
and output data (real data) of the previous activity, which are then evaluated
by a following activity or the condition of a transition.

Fig. 1: Example Petri Net that models the input, output, precondition, and
effect (IOPE) of a sort transition.

Our approach to using Petri Nets for the description of distributed workflows
is to relate the tokens of a level 3 net with classes and instances of real data by
means of High-Level Petri Nets (HLPNs) as shown in Fig. 1. HLPNs allow for
nondeterministic and deterministic choices simply by connecting several transi-
tions to the same input place and annotating edges with conditions. HLPNs also
make the state of the program execution explicit with tokens flowing through
the net that represent the input and output data as well as side effects. In
contrast, classical directed acyclic graphs (DAGs) only have a single node type,

and therefore data flowing through the net cannot be modeled easily. Using the
concept of edge expressions, a particular service can be assigned to a transition,
and conditions—also known as transition guards—may be used as an additional
control flow. The resulting workflow description can be analyzed for certain
properties such as conflicts, deadlocks, and liveliness using standard algorithms
for HLPNs. High-Level Petri Nets are Turing complete because they overcome
the capacity constraints (unbounded places) and therefore can do anything we
can define in terms of an algorithm [1].

The following paragraph introduces some commonly used terms. High-Level
Petri Nets are directed graphs, containing two distinct sets of nodes: transitions

– represented by rectangles – and places – denoted by circles. Places and tran-
sitions are connected by directed edges. An edge from a place p to a transition
t is called an incoming edge of t, and p is called input place of t. Outgoing

edges and output places are defined accordingly. Each place can hold a certain
number of individual tokens that represent data items flowing through the net.
The maximum number of tokens on a place is denoted by its capacity. A tran-
sition is called enabled if there is a token present at each of its input places,
and no output place has reached its capacity. Enabled transitions can fire by
consuming one token from each of the input places and putting a new token on
each of the output places. The number and values of tokens each place holds
during the workflow execution is called marking. The initial marking specifies
the marking at the beginning, and consecutive markings are obtained by firing
transitions. Each edge in the Petri Net can be assigned an edge expression. For
incoming edges, variable names are used as edge expressions, which assign the
token value obtained through this edge to a variable of that name. Additionally,
each transition can have a set of conditions. A transition can only fire if all of
its conditions evaluate to true for the input tokens.

Petri Nets are suitable to describe the sequential and parallel execution of
tasks with or without synchronization; it is possible to define loops and the
conditional execution of tasks. As mentioned above, we use Petri Nets not
only to model, but furthermore to control the execution of the workflow. In
most cases, the workflow within Grid applications is equivalent to the dataflow,
i.e., the decision when to execute a software component is taken by means of
availability of the input data. Therefore, the tokens of the Petri Net represent
real data that is exchanged between the software components. In this case, we
use Petri Nets to model the interaction between software resources represented
by transitions that are linked to Web Service operations, and data resources
represented by places linked to SOAP parameters. In other cases, however,
the workflow should be independent from the dataflow, and in addition, we
have to introduce control places and control transitions. Control transitions
only evaluate logical conditions. In the case that a transition is linked to a
Web service operation, the tokens store the output parameter returned by the
method call. The state of the workflow is represented by the marking of the
Petri Net, which makes it easy to implement tools for workflow check pointing
and recovery.

Fig. 2: The K-Wf Grid architecture with the component layers web portal (A),
Grid application building layer (B), Grid application control layer (C), the ver-

tical knowledge layer (K) and the lower level Grid middleware layer (D).

3 Workflow Enactment

This section describes the concept, implementation and deployment of the Grid

Workflow Execution Service (GWES). If you are interested in further documen-
tation or in downloading the software, please refer to the GWES home page at
http://www.gridworkflow.org/gwes/.

3.1 Architecture and Deployment

The Grid Workflow Execution Service is deployed as a standard Web Service,
so it seamlessly integrates into common system architectures as shown in Fig. 2.
There is a strict separation of the enactment machine and its client interfaces.
The GWES delegates parts of the refinement process from abstract to concrete
(executable) workflows to external web services, such as the Workflow Com-
position Tool (WCT) the Automatic Application Builder (AAB), the Resource
Matcher, and the Scheduler [10], [11], [13], [19].

3.2 Workflow Refinement Concept – from Abstract to Con-

crete Workflows

The GWorkflowDL and the GWES support several levels of workflow abstraction
that are displayed in Fig. 3. An initial input workflow provided by the user or
by the user assistant may possess different abstraction levels, ranging from an
abstract user request to the concrete (executable) workflow which can be invoked
directly on the available Grid resources. The supported abstraction levels are:

• User Request (Red): The user request represents an abstract operation
which has not been mapped onto potential workflows yet.

• Abstract Workflow (Yellow): An abstract (non-executable) workflow con-
sists of operations of Web Service or program execution classes. The Work-
flow Composition Tool (WCT) automatically composes abstract workflows
from the user requests, if the corresponding ontologies are represented
within the Grid Organizational Memory (GOM). The user can also di-
rectly provide abstract workflows without using the WCT.

• Workflow of Service Candidates (Blue): Consists of lists of Web Service or
program execution candidates, which match the Web Service (or program
execution) classes. The mapping is done by the Automatic Application
Builder (AAB) (or the resource matcher).

• Workflow of Service Instances (Green): Consists of concrete (executable)
instances of Web Service operations or program executions. The selection
of the optimal instance out of the list of candidates is delegated to the
Scheduler or resource selector.

• Control Flow (Black): Black transitions within the workflow denote a con-
trol flow (separate from the data flow) which is not connected to any real
operation.

Only green or black workflow nodes can directly be executed by the GWES.
If the workflow contains red, yellow or blue nodes, the WCT, AAB, Resource
Matcher, or Scheduler is invoked, in order to refine the workflow. If these com-
ponents are not able to provide a solution, the GWES will suspend the workflow
and the user has to refine the workflow, or to wait until a mapping comes avail-
able.

3.3 Workflow Enactment Concept

As High-Level Petri Nets are composed of four different kinds of graph elements
(transitions, places, edges, tokens). Therefore it is relatively easy to implement
a corresponding workflow enactment engine. Fig. 4 represents the enactment
algorithm, which is implemented as kernel of the GWES.

First, the workflow engine parses, verifies, and analyzes the incoming work-
flow description. Next, the engine collects all enabled transitions according to
the mathematical definition of the term enabled (refer to Section 2.1). For each
enabled transition, a condition checker evaluates the attached conditions (also
known as transition guards). If the condition is true and if the transition ref-
erences a concrete activity, this activity is started, e.g., invoking a remote Web

Fig. 3: The workflow abstraction levels that are supported by the GWorkflowDL
and the GWES.

Service operation, using the input tokens as input parameters. If the activity
completes, the corresponding transition fires; i.e., one token is removed from
each input place and the activity results (data, side effects) are placed as new
tokens on the output places. If the transition refers to an abstract activity, the
transition has to be refined first. The new marking of the Petri Net enables
subsequent transitions and their corresponding activities. If there are no more
enabled transitions nor active activities remaining in the workflow, the workflow
completes.

An advantage of Petri Net-based workflow engines is that they can process
almost every workflow pattern without modification of the enactment engine.
The Petri Net concept is very expressive and simple at the same time, and
there is no need to implement any special functionality for workflow constructs,
such as loops, if/then clauses, and synchronization points. All these workflow
constructs are supported implicitly by the Petri Net approach, and the workflow
engine itself does not have to bother about them if it implements the basic Petri
Net rules.

Fig. 4: The algorithm inside the Grid Workflow Execution Service’s kernel to
enact a Grid workflow.

In order to make the workflows persistent, the execution service uses a native
XML database for storing snapshots of the workflows including the workflows’
state, which is represented by the marking of the corresponding Petri Net. The
system provides a simple and robust checkpoint-restore functionality, and the
user may initiate each of these snapshots as a new workflow instance.

4 Workflow Visualization

The graphical workflow user interface is realized by a set of Java Applets and
Servlets which can be easily integrated in generic or application-specific web
portals. In addition, there exists a command line client program that implements
the full set of workflow management features and simplifies the integration into
legacy frameworks. The workflow synchronization between the execution service
and the graphical user interface is done by means of an advanced protocol which
makes use of the XUpdate syntax in order to transfer workflow modifications or
status changes from the execution service to the clients and vice versa.

The Grid Workflow User Interface (GWUI) is an interactive graphical inter-
face to the Grid Workflow Execution Service. It offers a set of features to initiate,
monitor, and manipulate workflows. It also includes mechanisms to support user
interactions during workflow execution like input data specification and decision
making.

The intention of GWUI is to provide a library of GUI components suitable
for workflow monitoring, manipulation and execution which can be differently
combined so that different GUI setups are possible. Thus, graphical interfaces
for different user requirements can be constructed on the basis of the GWUI
library.

Fig. 5 shows a screenshot of the GUI component that dynamically visualizes
the Petri Net of a running workflow. Further components include inspectors for
the details of single elements inside the workflow. The inspectors can be used
for monitoring and manipulation of diverse workflow properties. Furthermore,
dialogs for workflow status control are offered as well as the possibility to up-
load and run workflows on the Grid. The GWUI also offers a dynamic task
list showing all tasks the user has to accomplish in order to execute a certain
workflow. This task list interfaces with a generic data input dialog framework
so that application- and data-specific input dialogs can be triggered from within
the GWUI.

The GWUI has been designed regarding usability guidelines like flexibility
and consistency as well as guidelines for information visualization. The diverse
needs of different user groups have been addressed in the design. Furthermore,
the GWUI is suitable for collaborative workflow execution and manipulation.
Several instances of GWUI can be run on several computers and share the same
workflow instance. By means of a distributed object model which is part of the
GWorkflowDL library, all changes made to the workflow by one party will be
instantly distributed to all others working on the same workflow instance.

The GWUI is implemented in Java 1.4.2 in order to support also older
Browser Java plugins previous to Java 5, and it is based on the Java Swing GUI
framework. The single GUI components are included in several Java applets
which run inside the web browser of a client computer. In the K-Wf Grid por-
tal, these applets are located inside single portlets offering the user the flexibility
to construct a custom arrangement of the GUI components he/she requires.

5 Conclusions

The main scientific achievements of this work include the definition of a theoret-
ically well-founded Workflow Description Language, which is very simple, but
expressive at the same time, using the well-known concept of high-level Petri
Nets. With this approach, we are able to model arbitrary algorithms, including
parallel branches or loops. In addition, transitions can possess conditions that
we express using the XPath 1.0 syntax. Another innovation is the overall concept
of iteratively mapping abstract workflows onto concrete resources, taking into
account the most current monitoring information. Each of the abstraction levels
uses the same workflow description language, so it is possible to mix several
levels of abstraction in one workflow.

Petri Nets are a well-established approach in computer science for model-
ing and analyzing distributed processes, whereas many workflow management
systems in the e-Science domain use other workflow formalisms, such as BPEL

Fig. 5: Screenshot of the GridSphere portlet representing the Grid Workflow
User Interface together with the User Assistant Agent.

and DAG. The reasons for this are on the one hand the strong influence of in-
dustrial groups enforcing their own standards (e.g., BPEL) and on the other
hand the wish to keep things very simple (DAG). The Petri Net approach is,
nevertheless, a good candidate for becoming a vendor-independent standard for
graph-based modeling of e-Science workflows, as it has formal semantics—which
offer a profound theory background—and provides advanced analysis methods.
An encouraging alternative is to base the workflow engine on Petri Nets and to
map other high-level workflow formalisms (e.g., BPEL, UML) onto Petri Nets
just before the workflow enactment. It is worth mentioning that many com-
mercial workflow management systems in the business process domain are based
on Petri Nets and that the semantics of UML 2.0 activity diagrams have been
strongly influenced by them.

There exist several classes of Petri Nets that are suitable for different pur-
poses.

In order to apply the Petri Net approach to the choreography, orchestration,
and enactment of real-world e-Science workflows, High-Level Petri Nets (HLPNs)
provide an adequate solution. However, we propose to extend the classical defi-
nition of HLPN for this purpose. We introduce a special notation for conditions

(using the XPath 1.0 standard) to facilitate reactive workflow management in
addition to the control and data flows that are explicitly modeled by the edges
of the Petri Net. Transitions do not fire instantaneously, as they represent the
invocation of real-world software components or services. The content of data
tokens represents the real data that are produced by external software compo-
nents or services. We use edge expressions to link places with specific software
components or service parameters.

One drawback of the Petri Net approach is the fact that the graph may
become very huge for complex and fine-grained systems. One solution to this
problem is the use of hierarchical Petri Nets, where one transition represents
a whole sub-Petri Net. The main application area for Petri Nets is in loosely
coupled systems that exhibit a certain granularity of components.

6 Applications and Acknowledgements

The Grid Workflow Execution Service has been successfully applied in several
application domains, such as city traffic management, environmental simulations
[12] and media post processing. The research described here is supported in part
by the European Union through the IST-2002-511385 project K-Wf Grid [16]
and the IST-2002-004265 Network of Excellence CoreGRID [18]. Further known
projects that currently make use of the GWES are Instant-Grid [15], MediGRID
[17], Fraunhofer Resource Grid [6], Enterprise Grids [7], and BauVOGrid.

References

1. W. van der Aalst and A. ter Hofstede. Workflow Patterns: On the Expressive
Power of (Petri-net-based) Workflow Languages. Technical report, Department
of Technology Management, Eindhoven University of Technology P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands, 2002.

2. Martin Alt, Sergei Gorlatch, Andreas Hoheisel, Hans-Werner Pohl: A Grid Work-
flow Language Using High-Level Petri Nets. CoreGRID Technical Report Number
TR-0032, Institute on Grid Information, Resource and Workflow Monitoring Ser-
vices, CoreGRID, 2006

3. Martin Alt, Andreas Hoheisel, Hans-Werner Pohl, Sergei Gorlatch: A Grid
Workflow Language Using High-Level Petri Nets. R. Wyrzykowski et al. (Eds.):
PPAM05, LNCS 3911, pp. 715-722, Springer-Verlag Berlin Heidelberg, 2006

4. Martin Alt, Andreas Hoheisel, Hans-Werner Pohl, Sergei Gorlatch: Using High
Level Petri-Nets for Describing and Analysing Hierarchical Grid Workflows. In:
Proceedings of the CoreGRID Integration Workshop 2005, Pisa, 2005

5. L. Bernardinello and F. de Cindio. A survey of basic net models and modular
net classes. In Advances in Petri Nets 1992, The DEMON Project, volume 609 of
LNCS, pages 304–351, London, UK, 1992. Springer-Verlag.

6. Fraunhofer Resource Grid – http://www.fhrg.fraunhofer.de/

7. Enterprise Grids Project – http://www.epg.fraunhofer.de/

8. Tomasz Gubala, Andreas Hoheisel: Highly Dynamic Workflow Orchestration for
Scientific Applications. In: Proceedings of the CoreGRID Integration Workshop
2006, Cracow, 2006

9. Andreas Hoheisel and Martin Alt: Petri Nets. In: Workflows for eScience, Ian J.
Taylor, Dennis Gannon, Ewa Deelman, and Matthew S. Shields (Eds.), Springer,
2006

10. Andreas Hoheisel, Thilo Ernst, Uwe Der: A Framework for Loosely Coupled
Applications on Grid Environments. In: Grid Computing: Software Environments
and Tools. Cunha, Jose C.; Rana, Omer F. (Eds.), 2006 ISBN: 1-85233-998-5

11. Andreas Hoheisel: User Tools and Languages for Graph-based Grid Workflows.
In: Special Issue of Concurrency and Computation: Practice and Experience,
Wiley, 2005

12. Andreas Hoheisel: Workflow Management for Loosely Coupled Simulations. In:
Pahl-Wostl, C., Schmidt, S., Rizzoli, A.E. and Jakeman, A.J. (eds), Complexity
and Integrated Resources Management, Transactions of the 2nd Biennial Meet-
ing of the International Environmental Modelling and Software Society, Manno,
Switzerland, Volume 1, pp. 500-505

13. Andreas Hoheisel, Uwe Der: An XML-based Framework for Loosely Coupled
Applications on Grid Environments. P.M.A. Sloot et al. (Eds.): ICCS 2003. LNCS
2657, 245-254, Springer-Verlag Berlin Heidelberg, 2003

14. Andreas Hoheisel, Uwe Der: Dynamic Workflows for Grid Applications. In: Pro-
ceedings of the Cracow Grid Workshop ’03. Krakau, Polen, 2003

15. Instant-Grid Project – http://www.instant-grid.de/

16. K-Wf Grid Project – http://www.kwfgrid.eu/

17. MediGRID Project – http://www.medigrid.de/

18. Network of Excellence CoreGRID – http://www.coregrid.net/

19. Falk Neubauer, Andreas Hoheisel, Joachim Geiler: Workflow-based Grid Appli-
cations. In: Peter Sloot (Ed.) Future Generation Computer Systems, Volume 22,
Number 1-2, pp. 6-15, Elsevier, 2006

20. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instru-
mentelle Mathematik, Bonn, 1962.

Constructing Abstract Workflows of

Applications with Workflow Composition Tool

Tomasz Guba la1,2, Daniel Harezlak1, Marian Bubak1,3, and Maciej Malawski3

1 Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Kraków, Poland
2 Section Computational Science, Informatics Institute, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
3 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Kraków, Poland

emails: gubala@science.uva.nl, d.harezlak@cyfronet.pl,

{bubak, malawski}@agh.edu.pl

Abstract

The idea of an application workflows is gaining popularity as a method
of developing complex, distributed systems in a convenient way. Both
in the Grid community and the area of service-oriented computation
there are many research initiatives regarding the subjects of applica-
tion workflow composition, execution, monitoring etc. What is more,
there are solid indications that some results of that research entered re-
alization and exploitation phase: there are end-user tools and solutions
finding the way to the developers of distributed applications [7, 1]. In
this paper we present the results of design, implementation and ap-
plication of Workflow Composition Tool [8] that was created in the
scope of K-WfGrid Project [3]. Its main purpose is to analyze user’s
requirements regarding the desired application results and work with
information registries (that provide information on resources available
at runtime) to finally provide an automatically composed proposition
of a workflow of such application.

Keywords: Grid computations, workflow composition, web services

1 Introduction to Dynamic Scientific Workflows

The notion of an application workflow as a method of decomposition of complex
systems into smaller, reuseable functional parts is already well-known [16]. Also
the scientific community pays more attention to that type of processing since
many research-related activities are decomposable into such interconnected pro-
cesses. This approach allows for better structured and more legible approach to
given task, its repeatability and reusability. What is more, when one combines
that approach with the abilities of computational Grids, the combination offers
the opportunity of executing large-scale, distributed computations on the Grid
while conserving the natural and easy way of modeling them.

One of the features of workflow system especially crucial for scientific users
is the ability of dynamic reformulation. Dynamic workflow may change during
runtime – certain facts that occur during workflow execution may affect both
the way further workflow steps are enacted and the structure of the workflow

as well. This dynamic approach is better suited for the Grid execution environ-
ment due to its inherent ever-changing nature. A popular way to delivering the
feature of dynamism in such systems is through introduction of different levels
of abstractness [4]. The workflow described on the purely abstract level provides
information on the business logic that forms the entire application and its de-
composition structure and, as such, is well suited for reuse on many execution
platforms [6]. Every time an abstract workflow is executed, its description has to
be mapped onto certain realization composed out of the resources present in the
environment. Development of such a system is part of the K-WfGrid Project [3]
and the phase of composing abstract workflows is conducted by the Workflow
Composition Tool (WCT) described within this work.

This work presents a summary of this research: it explains the designed
composition algorithm, the way it was realized by a software system and what
results were obtained with its application. For thorough, more detailed expla-
nation of formal foundations of the composition algorithm and the other work
that is related to this subject, please refer to [9].

2 Workflow Composition Tool Design

The Workflow Composition Tool is designed and developed as a component of a
larger workflow orchestration and execution environment [10]. The aim of this
tool is to construct a new abstract workflow as a solution to the input problem
specified by a user as a set of application results he requires. The tool delivers a
workflow of service operations that would eventually provide the specified results.
The solution is abstract enough to support further reuse yet it is not executable
straight away – it requires another refinement (concretization) step [5]. Later on,
the refined workflow is ready to be executed in a dedicated enactment service.

The initial workflow description document that specifies all the results re-
quired by the user is provided in GWorkflowDL notation [2]. It may contain some
parts of workflow already specified and it may have another (yet unknown) parts
to be extended by the composer. Such parts (called unsatisfied dependencies)
usually contain specification of data or effect that is required at a certain stage
of workflow processing. Therefore the main objective now is to find suitable
providers for this data (or producers of this effect) in form of one or more Grid
services. To this end the composer queries an external ontological registry [12]
which delivers in return an identification of suitable operations of Grid services.
While the newly found operations may have their own dependencies (for instance
in the form of required input data), WCT follows the same algorithm again to
complete the workflow. When all the dependencies (both the original ones spec-
ified by the user and the ones introduced by new operations) are satisfied the
workflow is complete. When there are no appropriate service operations available
that would fulfill current requirements, the unresolved parts of the workflow are
labeled and may be refined again when the environment changes (as the output
is also given in the same GWorkflowDL notation, the tool is capable of re-reading
its own workflow in order to extend it later). Figure 1 shows the process.

Fig. 1: Coarse-grained view of the composition algorithm within WCT.

In order to provide better request-to-service matching the tool’s algorithms
are based on semantic description of services’ operations as building blocks of the
composed workflow. By employing an operation functional matchmaking process
based on Input-Output-Preconditions-Effect vectors the composer is able to find
the best available provider of the data requested by the user. The algorithm
of input-to-output comparison is as follows. Every input required or output
produced by an operation is described with an element called Data Template.
It defines a class of fitting data through a set of constraints: what is contained
(content constraint), how it is expressed (format constraint) and how it is stored
(storage constraint). Using this formally defined constraints the tool compares
different data templates and decides whether given data belongs to specific class
(and, therefore, could be used by certain service that requires it). The constraints
values are URIs that point to specific concepts in a taxonomy stored inside
dedicated knowledge store. The content constraint may point to a concept in
domain-specific ontologies while the format constraint may use other means, e.g.
an external taxonomy of data formats. Such a solution allows not only for free
reuse of previously defined, well-established upper ontologies but also makes it
possible to apply distinct comparison algorithms with regard to different aspects
of data description [14].

3 Realization of the Workflow Composition Tool

The WCT is implemented as a service that offers its functionality through a
remote interface and on its own contacts other needed services remotely. This
loosely coupled architecture allows for easier distribution of components – the
composer is essentially a stateless transformation that stores all the information
it needs in an external memory (see Fig. 2). As the local resources are not cru-
cial for the tool it may be freely relocated and replicated as long as it maintains
a connection with the ontological store that contains registry of the available
services. Internally the tool contains three main functional blocks, one that re-
trieves every unsatisfied dependency from the workflow. Another part uses the
specification of the dependency to deliver a solution (for instance, through query-
ing an external registry for suitable services or through searching the description
of the workflow whether there are already appropriate services there). The final
block is formed by solution appliers that incorporate the found solutions into

Fig. 2: Interaction of WCT with other K-Wf Grid components.

the current state of the composed workflow. Those three parts are activated in
turns in subsequent iterations until the workflow is finally ready. The tool uses
widely accepted SOAP standard for communication with external systems and
it relies on the recent achievements of semantic web to obtain and process se-
mantic information (RDQL/ITQL [15], OWL). In order to increase the possible
applicability the tool is able to cooperate with different services that provide
ontologies. It also uses XPath query standard in order to retrieve reusable sub-
workflow documents from the eXist XML database and to incorporate them as
parts of constructed solutions.

4 Application of WCT and Measurements

In order to apply the presented research two applications were chosen, both of
them being distributed simulations of complex phenomenons. Prior to appli-
cation, the experts and maintainers of these simulations described the related
domains and their tools in ontological taxonomies. One application is a large-
scale scientific flood disaster simulation cascade [11] and the other is a simulation
of traffic-generated pollution in a city. As a server for the composition tool, we
use a PC-class machine with a single 3 GHz Pentium 4 CPU, 1 GB of memory
and running SUN JDK1.5. Communication with the external ontology registry
took place over a broadband connection with an average latency of 0.5 ms. The
result in Fig. 3 show the average time of composition compared to the complex-
ity of given workflows (that is the number of services in those workflows and
interdependencies between them).

One may compare the time required for the computation (the dotted line)
with the percentage of this time spent on contacting the external registry (the
dashed line). The latter measurement includes a search through a large space
of ontological triples with reasoning functionality applied and the time required
to send and receive the result through the SOAP protocol. As may be seen
this takes a considerable percentage of the entire composition time. For com-
parison, when the ontology registry is installed locally on the same computer,
the resultant composition times (the rightmost plot) are much shorter and the
registry communication also had less impact on the complete composition time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
[m

s]

Problem size [n]

Composition time
Query time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60

T
im

e
[m

s]

Problem size [n]

Composition time
Query time

Fig. 3: Time to compose a workflow with the given number of operations.

In either case the obtained values are acceptable as the composition provides
abstract, reusable workflows the creation of which is not required every time a
workflow is executed.

5 Achievements and Conclusions

From the scientific point of view, we regard as the most important achievement
the algorithms and heuristics [9] that are able to combine theory of description
logic of service operations with the strict formalism of PetriNet-based work-
flows [13]. Special care was given to guarantee there are no deadlocks or unde-
sired computation redundancy in the composed abstract workflows. Additional
post-processing optimization algorithms are there to assure that the amount
of needed user-provided data is minimized and to also reduce the size of the
workflow graph.

From the realization point of view, the most important factor is the ability
to provide formally and semantically valid workflows. As the tool uses domain-
specific ontologies for workflow element description the entire processing is un-
derstandable to the end user as the ontologies provide common vocabulary. Due
to the high level of abstraction applied the user is provided with meaningful func-
tional blocks of the workflow rather than just resource addresses or technology-
dependent endpoints. As the solutions proposed by the tool are abstract their
descriptions do not outdate soon and thus may be used again (even automati-
cally by the same tool in the course of building another workflow that requires
similar processing as a previous one).

Finally, the feasibility of the implementation was finally proven with two ap-
plications from different computational science domains that represent complex,
multi-level simulations.

Acknowledgements. This work was partly funded by the European Commis-
sion, Project IST-2004-511385, K-Wf Grid and the Polish State Committee for
Scientific Research, SPUB-M 112/E-356/SPB/5.PR UE/DZ 224/2002-2004.

References

1. Netbeans enterprise pack. http://www.netbeans.org/products/enterprise/.
2. M. Alt, A. Hoheisel, H-W. Pohl, and S. Gorlatch. A grid workflow language

using high-level petri nets. In R.Wyrzykowski, editor, 6-th Intl. Conf. on Parallel

Processing and Applied Mathematics PPAM’2005, volume 3911, pages 715–722.
Springer-Verlag LNCS, 2005.

3. K-WfGrid Project Consortium. http://www.kwfgrid.eu.
4. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Metha, K. Vahi, K. Blackburn,

A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping Abstract
Complex Workflows onto Grid Environments. Journal of Grid Computing, pages
25–39, 2003.

5. L. Dutka, B. Kryza, K. Krawczyk, M. Majewska, R. Slota, L. Hluchy, and J. Ki-
towski. Component-expert architecture for supporting grid workflow construction
based on knowledge. In Innovation and the Knowledge Economy. Issues, Appli-

cations, Case Studies, pages 239–246. IOS Press, 2005.
6. T. Fahringer, S. Pllana, and A. Villazon. A-gwl: Abstract grid workflow language.

In Int. Conf. on Computational Science (ICCS), pages 42–49. Springer, 2004.
7. Eclipse Foundation. Eclipse bpel project. http://www.eclipse.org/bpel/.
8. T. Gubala, M. Bubak, and M. Malawski. Support for automatic workflow com-

position based on ontologies in semantic grid environment. In 5th Cracow Grid

Workshop (CGW05) – Workshop Proc., pages 34–40. ACC Cyfronet AGH, 2006.
9. T. Gubala, D. Harezlak, M. Bubak, and M. Malawski. Semantic composition of

scientific workflows based on the petri nets formalism. In The 2nd IEEE Inter-

national Conference on e-Science and Grid Computing, page 12. IEEE Computer
Society Press, 2006.

10. T. Gubala and A. Hoheisel. Highly dynamic workflow orchestration for scientific
applications. In CoreGRID Intergation Workshop 2006 (CIW06), pages 309–320.
ACC CYFRONET AGH, 2006.

11. Ondrej Habala, Martin Maliska, and Ladislav Hluchy. Service-based flood fore-
casting simulation cascade in k-wf grid. In 6th Cracow Grid Workshop (CGW06)

– Workshop Proceedings. ACC Cyfronet AGH, to appear.
12. B. Kryza, R. Slota, M. Majewska, J. Pieczykolan, and J. Kitowski. Grid organi-

zational memory – provision of a high-level grid abstraction layer supported by
ontology alignment. Future Generation Computer Systems, 23(3):348–358, 2007.

13. V. Pankratius and W. Stucky. A formal foundation for workflow composition,
workflow view definition, and workflow normalization based on petri nets. Aus-

tralian Computer Science Communications (ACS), 27(6):79–88, 2005.
14. M.A. Rodriguez and M.J. Egenhofer. Determiniing semantic similarity among

entity classes from different ontologies. IEEE Transactions on Knowledge and

Data Engineering, 15(2):442–456, 2003.
15. A. Seaborne. Rdql – a query language for rdf. Technical report, Hewlett-Packard

through W3C Consortium, 2004. http://www.w3.org/Submission/RDQL/.
16. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid comput-

ing. Special Issue on Scientific Workflows, SIGMOD Record, 34(3), 2005.

Automatic Application Builder – Tool for

Automatic Service Selection

Lukasz Dutka1, Jacek Kitowski1,2, and Szymon Natanek1,2

1 Academic Computer Centre CYFRONET AGH,
ul. Nawojki 11, 30-950 Cracow, Poland

2 Institute of Computer Science, AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Cracow, Poland

email: dutka@cyfronet.krakow.pl

Abstract

In this paper we try to describe process of automatic service selection
as a part of workflow creation process if K-Wf Grid project. We present
Automatic Application Builder (AAB) – tool developed in K-Wf Grid
project, which retrieves information about services from knowledge
repository and using rule-based expert system performs selection of
best them. Thus AAB is able to match abstract workflow operations
onto concrete one – ready for execution.
We also describe rule-based expert system [1, 2, 3, 4, 5] – the main part
of developed tool, which takes into account user preferences allowing
to customize and extend its functionality.

1 Introduction

The global evolution of grid systems [6, 7] and trends towards breaking any
barriers in the access to grid, makes the environment much more complex then it
used to be. At the moment the grid systems evaluate into a gigantic set of grid or
web services deployed across to world where every minute might bring new tools
deployed as services. The trend makes obvious that the future grid applications
will be workflows consisted of distributed services. On the other hand gird must
be user-friendly and accessible for everybody. Thus in K-Wf Grid we developed
infrastructure automatizing process of construction workflow-based application
trying to provide application basing only on general description of expected
results provided by the user of the application.

Basing on general description of the expected results provided by the users,
one of the K-Wf Grid tool tries to find a way of providing expected by the user
results without going into details – the result of this phase we call an abstract
workflow. Such a workflow is not ready for execution – it contains definition of
tasks, which are described by abstract service classes and need to be concretized.

To obtain workflow, which is ready for execution, we developed Automatic
Application Builder, which is responsible for matching mentioned service classes
onto concrete service instances.

2 Abstract Service Operations

In K-Wf Grid project workflow we define several levels of abstraction of work-
flow task. Mapping between different levels of abstraction is done by workflow
refinement by different tools.

Red – Abstract operation. The most abstract level of workflow task repre-
sents operation with known input and output data, but without specified details.
For such an operation Workflow Creation Tool (WCT) creates proposition of
workflow containing inter alia tasks described by class of web services.

Yellow – Operation on a Web Service class. A workflow of several WS-
ClassOperations (abstract workflow) may represent a refinement of one abstract
operation. Operations on Web Service classes are described by their interfaces
including the semantic description of their functional behaviour.

Blue – List of Web Service operations. AAB produces list of concrete
service instances which match given operation class and are best for performing
given task. From among this service instances one is selected for execution

Green – Concrete operation. Last level of task abstraction is concrete op-
eration. Such task contains concrete web service operation which is ready and
scheduled for execution by Scheduler.

Black – Control operation. We define additional level of abstraction for
tasks responsible for controlling execution of workflow. Such operations allow
to define workflow control construct like for example splitting into branches or
joining branches.

GreenBlueYellowRedRed GreenBlueYellow InvokeWCT AAB Scheduler GWES

Fig. 1: Levels of workflow task abstraction.

Workflow (or its part) abstraction level is defined by highest abstraction level
of its tasks. Only green and black tasks can be executed, thus in order to be
executed, each abstract part of workflow have to be refined to achieve suitable
level of abstraction.

3 Matching Abstract Service Class

AAB transfers workflow task from yellow abstraction level to blue one by match-
ing abstract service class onto list of concrete service instances.

To achieve this goal, AAB exploits semantic knowledge gathered by a central
K-Wf Grid knowledge repository (called Grid Organization Memory – GOM).
It retrieves information about current status of system and currently registered

service instances which match to given class and process it to get best services
which can perform given workflow task.

AAB

a1

c3

clBclB

d1

GOM
clB

b1

b2

b3

b4

Abstract service class

Concrete service instances

Fig. 2: Matching service class onto concrete instances.

Depending on current grid infrastructure, GOM can return varied, but in
most cases large number of services. All those services realise same functionality,
but they differ in non-functional parameters of execution. Such differences allow
to define criteria for defining which services are better and worse, and finally
create hierarchy among them.

4 Selection of Best Service Instances

Non-functional parameter of service execution can be treated as a separate cri-
terion in their comparison. These criteria create multidimensional space where
each service is represented as a point with coordinates represented by values of
execution parameters. For example execution time and reliability create two di-
mensional space in which services with less execution time and greater reliability
are more desirable as shown on figure 3.

AAB selects such a services which represent optimal compromise of each
parameter value, thus are best for the realisation of the given workflow task.
In the end AAB tries to facilitate execution and optimise workflow from the
performance point of view.

5 Rule-Based Expert System

In dynamically changing environment of distributed services process of selection
of best candidates for execution of wotkflow task requires a tool which can be

Execution time

Relayability

Best solutions

Fig. 3: Example of selection criterion.

dynamically adjusted to this environment. Registration of new services in GOM
can deliver crucial information or new criterion data to making a decision about
service selection. Moreover, evolution of system can cause appearance of new
sources of knowledge which also can be decisive in selection. Therefore AAB
includes rule-based expert system which is responsible for making decision about
service selection.

Applied expert system uses Java Expert System Shell [8, 9, 3, 10] as an engine.
It allows to load rules which are to be executed in run time, thus allowing to
dynamically change behavior of system. Moreover, this feature allows to extend
functionality of expert system by adding set of rules which are responsible for
making decision.

AAB expert system [11, 12, 13] used extendable set of rules which define
criteria of selection. Each set of rules is responsible for creating a hierarchy
among services in relation to their one concrete non-functional parameter, and
in the end selecting set of best of them.Each set of rules that is used by AAB is
loaded in run time, thus it is possible to add some criterion of selection without
necessity of stopping AAB. Aside from possibility of extending set of criterion,
there is possibility to remove some criterion from system. In case that set of
rules required by AAB does not exist, selection criterion related to given set of
rules is omitted.

Use of extendable set of rules as a criteria for evaluating best fitted services,
allowed us to change behavior of created tool in run time and easily customise
it or extends its functionality. Moreover, it brings possibility to add handling
of new service non-functional parameters which will be defined in future, or to
create new criterion of selection.

Process of selection is divided into two stages as shown of figure 4. In first
one rules sets which define criteria of selection are applied, giving set of services

s1

s4
s2

s3

s5
s6

r �
r�

r �
r�

r �...

Selection criteria rules

s1

s4

s2
s3

s1 s4

r �
Stage1

Stage2

Service instances

Best services
selection rules

Selection result

Fig. 4: Best services selection process.

which are best with respect to each of criterion. If there is no criterion of
selection defined, it means that it does not matter which service is going to be
executed and it is only required that service is executed. Therefore in such case
best service is selected randomly from among propositions returned by GOM.

Second stage is responsible for selecting services which are best with respect
to all criteria. We consider all criteria equally important, thus to decide which
services are best we define relation which creates order among services.

s1

s2

s4

c1 c4c3c2

Best service instances

s3

Selection criteria

Fig. 5: Best services.

Service s1 is considered as better then s2 if set of criteria which s1 meets
includes set of criteria meet by s2. In other words, s1 is better then s2 if best
with respect to at lest all criteria that s2.

Using given relation set of best service instances is calculated. Each service
instance is compared with all other, and if exist instance that is better then it
is removed from set of best services. Remaining services are considered to be
equally good, and to be best with respect to all criteria.

6 User Preferences

Different service instances registered in GOM which represent certain class of
service, can vary with non-functional properties such as for example execution
time or reliability. These parameters may be crucial for user which can have
different preferences in selection services for execution in different workflows.
Therefore it is important to allow user to define how services should be selected
with regard to these properties.

AAB strongly takes into account users preferences or requirements which
should be fulfilled by services being of the part of the final workflow-based ap-
plication. Each set of rules used by expert system which represent separate
criterion in selection of best service is considered as users preference. User can
choose which sets of rules should be used during selection thus, define criteria
for selection of best services.

For each workflow task user can define list of rules sets which are used during
process of selection of best services for execution of given task. It is possible that
for the same task in different parts of workflow user can choose different sets of
rules which will cause selection of different service instances in different stages
of workflow execution.

7 Use of External Source of Knowledge

AAB makes it possible to use external sources of information derived from ex-
ternal systems or services in selection process. One can define own set of rules
which retrieve information from external sources of information and use them
decide which service instance is best for performing an operation.

AAB uses Java Expert System Shell [14] as an engine for expert system which
select best services. It allows to execute any Java code inside of rules, therefore
it is possible to perform processing of data retrieved from external sources, and
prepare them to be used in selection of best services.

During integration of AAB in K-Wf Grid project, we already made use of
external source of information to retrieve estimated execution time of given
service operation. We prepared set of rules which invoke Knowledge Assimilation
Agent web service to retrieve proper information, and then using it decide which
service is best.

AAB

External

source of

knowledge

s1

s2

s3

s4

r1
r2

r3

rext

rn...

Selection criteria rules
Service instances

User selection rules

External code

Fig. 6: Use of external sources of knowledge.

8 Summary

We have presented process of automatic service selection as a part of K-Wf Grid
workflow refinement using rule based expert system. We have shown possibilities
of customizing behavior and functionality of created tool, and mentioned its
exploitation in K-Wf Grid project.

Presented expert system with extendable set of rules creates opportunities
for further usage of AAB in other systems, and other application domains in
K-Wf grid system. Moreover it allows to extends functionality of AAB with
external sources of knowledge and data.

Acknowledgements. The work described in this paper was supported in part by
the European Union through the project “K-WF Grid” funded by the European
Commission program IST-2004-511385.

References

1. L. Dutka, R. Slota, and J. Kitowski. Component-Expert Architecture as Flex-
ible Environment for Selection of Data-handlers and Data-Access-Estimators in
CrossGrid. In M. Turala M. Bubak, M. Noga, eds., Proceedings Cracow Grid

Workshop ’02, pp. 201-209, Cracow, Poland, Dec. 11-14, 2002.
2. L. Dutka R. Slota D. Nikolow J. Kitowski K. Stockinger, H. Stockinger. Access

Cost Estimation for Unified Grid Storage Systems. In 4th International Work-

shop on Grid Computing (Grid2003), Phoenix, Arizona, Nov. 17, 2003. IEEE
Computer Society Press. (in print).

3. L. Dutka and J. Kitowski. Application of Component-Expert Technology for
Selection of Data-Handlers in CrossGrid. In D. Kranzlmüller, P. Kacsuk, J. Don-
garra, and J. Volkert, eds., Proc. 9th European PVM/MPI Users’ Group Meeting,
volume 2474 of Lecture Notes on Computer Science, pp.25-32, Linz, Austria,
Sept.29-Oct.2, 2002. Springer, 2002.

4. L. Dutka, R. Slota, D. Nikolow, and J. Kitowski. Optimization of Data Access
for Grid Environment. In 1st European Across Grids Conference, Lecture Notes
in Computer Science, Universidad de Santiago de Compostela, Spain, Feb. 13-14,
2003. Springer. (in print).

5. L. Dutka and J. Kitowski. Flexible Component Architecture for Information
WEB Portals. In: A. Bogdanov J. Dongarra A. Zomaya Y. Gorbachev P. Sloot,
D. Abramson, eds., Proc. Computational Science – ICCS 2003 International Con-

ference, Lecture Notes in Computer Science, Saint Petersburg Russian Federation,
Melbourne Australia, June 2-4 2003. vol. 2657, pp.629-638, Springer, 2003. (in
print).

6. J. Nick S. Tuecke I. Foster, C. Kesselman. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG. Argonne National Lab., Global Grid Forum, June 22,
2002.

7. I. Foster and D. Gannon. Open Grid Services Architecture Platform. Argonne
National Lab., Feb. 16, 2003.

8. C. Duvel. Establishing rule-based models to implement workflow within construc-

tion organizations. PhD thesis, University of Florida, 1999. UMI 9976532.
9. C. Duvel and R. R. A. Issa. The application of expert systems to controlling

workflow within the construction management environment. In: B. Kumar and
B.H.V. Topping, eds., Artificial Intelligence Applications in Civil and Structural

Engineering, pp.61-72. Civil-Comp Press, 1999.
10. K. Parsaye and M. Chignell. Expert Systems for Experts. John Wiley, 1988.
11. L. Dutka and J. Kitowski. Expert Technology in Information Systems Develop-

ment Using Component Methodology. In Proc. of Methods and Computer Systems

in Science and Engng., pp. 199-204, Cracow, Nov.19-21, 2001. ONT. (in Polish).
12. L. Dutka, P. Nowakowski, J. Kitowski: ”Java-Based Component Expert Frame-

work for Automatic Application Builder”. In Proceedings of the Cracow Grid
Workshop 2004, pp.270-274, Academic Computer Centre CYFRONET AGH,
ISBN 83-915141-4-5, Poland 2005

13. L. Dutka, B. Kryza, K. Krawczyk, M. Majewska, R. Slota, L. Hluchy, J. Ki-
towski: ”Component-expert Architecture for Supporting Grid Workflow Con-
struction Based on Knowledge”. In Cunningham P. Cunningham M. (Eds) Inno-
vation and the Knowledge Economy. Issues, Applications, Case Studies. Vol. 2.
IOS Press 2005. pp. 239-246.

14. Java Expert System Shell home page: http://www.jessrules.com/

K-WfGrid Scheduler – Scheduling Grid
Workflows Based on Prediction and Performance

Knowledge

Marek Wieczorek, and Thomas Fahringer

Distributed and Parallel Systems Group,
Institute of Computer Science, University of Innsbruck

email: marek@dps.uibk.ac.at

Abstract

The K-WfGrid scheduler is a performance oriented workflow Grid
scheduler, responsible for making workflow applications ready for ex-
ecution, by assigning workflow transitions to the resources where the
web services corresponding to the transitions should be executed. It
is meant as a tool which uses the performance estimation techniques
(knowledge-based performance predictions and performance monito-
ring) developed in the K-WfGrid project, and applies them to make
a reliable workflow scheduling. We present the scheduler in context of
the whole project, explaining the way how it is adjusted to the workflow
representation used in the project, and how it uses other components
of the project to support the scheduling decisions. We also explain in
detail the scheduling techniques implemented in the scheduler.

1 Introduction

The K-WfGrid project [1] provides a complete application execution and com-
position environment for the Grid. The workflow description language used in
K-WfGrid called GWorkflowDL [2] is based on the Petri Net notation which is
a successful representation used to describe the behavior of distributed systems.
Workflow elements can be described on different abstraction levels (represented
by different colors), of which only the lowest green level allows for execution.
The Web Service technology is used in K-WfGrid as the representation describ-
ing activity interfaces. At the lowest abstraction level, every workflow activity
(every workflow transition, using the Petri Net notation) is described by a web
service interface, as a web service operation. The service responsible for process-
ing and execution of the workflows is called Grid Workflow Execution Service
(GWES). GWES can process the workflows which are at the lowest abstraction
level. The services responsible for service creation are called Workflow Conver-
sion Tool (WCT) and Automatic Application Builder (AAB). The scheduler is a
service which prepares workflows for execution, by transforming the transitions
to the lowest abstraction level (i.e., by solving all ambiguities in the workflow
structure). The dependences between different components of the K-WfGrid en-
vironment are depicted in Fig. 1. WCT and AAB apply sophisticated reasoning
techniques to create a valid workflow which will produce proper results based

on the given input data. The result workflow may have multiple semantically
equivalent web service deployments mapped to a single transition, only one of
which can be used in the real execution (such a workflow is called workflow of
service candidates). When creating workflows, WCT and AAB do not take into
consideration any performance aspects of workflow execution. In this way, the
workflow created by WCT and AAB is neither fully concrete nor optimized with
respect to performance.

Fig. 1: K-WfGrid environment.

The scheduler processes the workflows created by WCT and AAB, and se-
lects between semantically equivalent variants of web service deployments (ser-
vice candidates), assigning in that way transitions to the resources where the
candidates are deployed. The goal is to optimize the performance of workflow
execution, by trying to find a workflow mapping which will result in the shortest
possible workflow execution time. Multiple scheduling algorithms implementing
different graph traversing approaches (full-graph analysis or individual tran-
sitions analysis), supported by different types of auxiliary data (performance
predictions or performance monitoring), can be used interchangeably. As the
general workflow scheduling problem is known to be NP-complete, the imple-
mented scheduling algorithms are heuristics rather than exact algorithms.

The reminder of the paper is organized as follows. In Section 2 we describe
the basic architecture of the scheduler designed to work in the K-WfGrid envi-
ronment depicted in Figure 1. In Section 3 we present the scheduling methods
implemented in the scheduler, showing the way in which the knowledge data
generated in the K-WfGrid environment is applied to support the scheduling
decisions. Finally, Section 4 concludes the paper.

2 Scheduler Architecture

The scheduler consists of a single software component, which can be accessed
by the user via different interfaces. It can be deployed as an Axis web service
and accessed via a web service interface, or used as a normal Java library and
accessed via Java API. The user can configure and monitor the deployed service
using a graphical web interface (a Java servlet).

The scheduler is used by GWES when a workflow created by WCT and AAB
contains blue transitions (i.e., transitions assigned to alternative service candi-
dates). The scheduler tries to make the best possible scheduling, supported by
the information obtained from auxiliary services. Performance predictions which
allow for estimation of expected execution time for different service candidates
can be obtained from the component of K-WfGrid called Knowledge Assimila-
tion Agent (KAA). Performance measurements (both static and dynamic infor-
mation about the resources) can be obtained from the Performance Monitoring
and Analysis service. If the auxiliary data is not available for some resources or
deployments, the scheduler uses default values. The interactions of the scheduler
with different components are depicted in the use case diagram in Fig. 2.

Fig. 2: Use Case diagram of the Scheduler.

Fig. 3 shows the class diagram of the scheduler, including different algorithms
implemented. The scheduler implements several scheduling algorithms which can
be used as interchangeable plugins. The easy algorithm (class EasyScheduling)
provides a basic functionality of the scheduler, as it changes workflow transi-
tions from blue to green by selecting always the first option in the list of web
service candidates. The random algorithm (class RandomScheduling) is a sim-
ple modification of the easy algorithm, which selects service candidates in a
random way (rather than selecting always the first candidate from the list). The
other three algorithms implement more advanced scheduling techniques, using
data obtained from other K-WfGrid services. The performance-based algorithm
(class PerformanceDrivenScheduling) uses the performance data from the Per-
formance Monitoring and Analysis service to select the resources which offer the
most appropriate execution conditions, from the point of view of performance.
The prediction-based algorithm (class KAABasedScheduling) uses execution time
predictions from the KAA service to minimize the execution time of the work-
flow. The prediction-and-performance-based algorithm (class KAAPerformance-
BasedScheduling) combines the two aforementioned algorithms, and applies the
predictions modified by the current performance information to optimize the
execution time of workflows. The last two algorithms implement an extension
of the Heterogeneous Earliest Finish Time (HEFT) [4] algorithm which proved
to be an efficient approach for scheduling of scientific workflows [5].

Fig. 3: Class diagram of the Scheduler.

3 Scheduling Algorithms

Different scheduling algorithms apply different strategies to select the service
candidates to be executed on the Grid. Fig. 4 shows the operation of an example
scheduling algorithm processing an example workflow.

Fig. 4: Example of workflow scheduling.

As mentioned in Section 2, there are five different algorithms implemented in
the scheduler: easy, random, performance-based, prediction-based, and prediction-
and-performance-based. The two first algorithms are basic algorithms which can
schedule workflows even when no performance data is available. The three last
algorithms are advanced algorithms, and require performance data to support
the scheduling decisions.

3.1 Basic Algorithms

The easy scheduling algorithm traverses a whole workflow and schedules all the
blue transitions in the workflow. The algorithm selects always the first web
service candidate assigned to each transition. The random scheduling algorithm
is similar to the random algorithm. The only difference is that it selects the
service candidates in a random way, not always the first candidate as in case of
the easy algorithm.

3.2 Advanced Algorithms

Performance-Based Algorithm

The performance-based algorithm is based on performance data (both static and
dynamic), taken from the Performance Monitoring and Analysis service. The
scheduler queries the service to get the following data:

• for each physical resource r:
– number of CPUs of the resource: n
– CPU speed of the processors on the resource: cpu speed(p)

• for each CPU p1, p2, ..., pn, fraction of CPU which is idle (available):
available cpu(pk), available cpu(pk) ∈(0%,100%)

The algorithm calculates a special performance indicator P for each physical
resource:

P (r) = cpu speed (r) ·
∑n

i=1
available cpu (pi) · qi−1

r – a physical resource
q – arbitrarily determined coefficient for multiple CPUs, q ∈[0,1] (by default

q=1.0)
The scheduling decisions made by the algorithm try to maximize the perfor-

mance indicator, by selecting always the instance of the service which is deployed
on the resource with the maximum value of P (see Fig. 5).

Fig. 5: Performance indicators for an example Grid.

Prediction-Based Algorithm

The prediction-based algorithm uses execution time predictions produced by the
KAA service to minimize the execution time of workflows. The predictions for
every service candidate are used to support the scheduling. The algorithm ex-
tends the HEFT algorithm mentioned in Section 2 which is a list scheduling
algorithm designed for Directed Acyclic Graphs (DAGs). HEFT has been suc-
cessfully applied in the ASKALON project [3]. The extensions applied in the
prediction-based algorithm consist in adjusting the algorithm to the workflow

model based on colored Petri Nets which may include loops and conditional con-
structs, and where not all transitions can be processed by the scheduler (only
blue transitions can be processed). In order to address this workflow model, the
prediction-based algorithm converts the workflows to DAGs by unrolling loops
and by considering conditional branches as parallel executions. In addition, the
algorithm removes from the workflow all transitions which are not blue (the de-
pendencies between transitions are preserved). The result DAG can be scheduled
using HEFT.

HEFT is a full-ahead list scheduling algorithm which first orders the work-
flow transitions to form a list, and then processes the transitions from the list
one after another, selecting the service candidate which is most optimal for each
transition. The order in the list is determined according to the decreasing rank
values of the workflow transitions. The rank value of a transition is calculated
as its distance (i.e., minimal remaining execution time) from the transition to
the end of the workflow. The performance predictions from KAA are used to
predict the execution times for different service candidates. In order to calculate
the rank value for a workflow transition, we first assign to each transition its
weight value (i.e., the average value calculated over the performance predictions
for all the service candidates assigned to the given transition). Then, the work-
flow is traversed bottom-up, and the rank value for each workflow transition
is calculated. An example workflow scheduled using HEFT is shown in Fig. 6.
In the figure, a pair (transition, resource) represents a service candidate which
implements the transition and is deployed on the resource.

Fig. 6: Example workflow scheduled with HEFT.

Prediction-and-Performance-Based Algorithm

The prediction-and-performance-based algorithm combines the two aforemen-
tioned algorithms (the performance-based algorithm and the prediction-based
algorithm). It takes the execution time predictions from the KAA service and
modifies them according to the performance data taken from the Performance
Monitoring and Analysis service. Then, an algorithm similar to the prediction-
based algorithm described above is executed, which uses the modified execution
time predictions instead of the normal performance predictions. The modified
execution time predictions are calculated based on the following data taken from
the Performance Monitoring and Analysis service:

• for each physical resource r:
– number of CPUs of the resource: n

• for each CPU p1, p2, ..., pn, fraction of CPU which is idle (available):
– available cpu(pk), available cpu(pk) ∈(0%,100%)

The algorithm calculates a special performance indicator P for each physical
resource:

P (r) =
1− qn

(1− q) ·
∑n

i=1 available cpu (pi) · qi−1

r – a physical resource
q – arbitrarily determined coefficient for multiple CPUs, q ∈[0,1] (by default

q=1.0)
Finally, the modified execution time prediction is calculated in the following
way:

METP (d) = P (resource (d)) · ETP (d)

d – a service candidate (deployment)
resource(d) – resource on which the service candidate d is deployed
ETP(.) – execution time prediction obtained from KAA
P (.) – performance indicator

The prediction-and-performance-based algorithm is the most advanced one used
in the scheduler, as it applies both the knowledge-based performance predictions
and the performance data to support the scheduling. By doing this, the algo-
rithm takes advantage of the full potential of the K-WfGrid environment – both
of the knowledge-based components applying sophisticated reasoning techniques
to reason about the expected execution times, and of the monitoring services
providing different types of performance data.

4 Conclusions

We presented the scheduler implemented in the K-WfGrid environment, which
schedules workflows based on knowledge-based performance predictions and per-
formance monitoring data. We described the scheduler as a component of the
K-WfGrid which addresses the performance objective when preparing workflows

for execution, by using the advanced reasoning and monitoring techniques im-
plemented in K-WfGrid. In this way, the scheduler helps to fulfill the main
goal of the K-WfGrid project which is the knowledge-based support of workflow
construction and execution. The scheduler implements a number of scheduling
algorithms designed for the workflow representation used in K-WfGrid, which
are able to schedule workflows with and without performance support provided
by the auxiliary components.

The future work on the K-WfGrid scheduler may focus on exploring some
just-in-time scheduling techniques, based on a more dynamic communication
protocol between the scheduler and GWES. As another possible research direc-
tion, also rescheduling techniques using the existing functionalities of the Perfor-
mance Monitoring and Analysis service may be applied for workflow scheduling.

Acknowledgements. This research has been supported by the Project K-WfGrid
(EU IST-2002-511385).

References

1. K-WfGrid project – http://www.kwfgrid.eu

2. M. Alt, S. Gorlatch, A. Hoheisel, and H.-W. Pohl. A Grid Workflow Language using
High-level Petri Nets. In Second Grid Resource Management Workshop, Poznan,
Poland, Sept. 2005.

3. T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H.-L. Truong, A. Villazón, M. Wieczorek. ASKALON: A Grid Application Devel-
opment and Computing Environment. 6th International Workshop on Grid Com-
puting, c© IEEE Computer Society Press, November 2005, Seattle, USA.

4. H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing. IEEE Transactions
on Parallel and Distributed Systems, 13(3), pp. 260-274, March 2002.

5. M. Wieczorek, R. Prodan, T. Fahringer, Scheduling of Scientific Workflows in the
ASKALON Grid Environment, ACM SIGMOD Record, 09/2005

DIPAS: Performance Analysis and Visualization

Support for Grid Workflows

Hong-Linh Truong1, Thomas Fahringer2, Peter Brunner2,

Robert Samborski2, and Vlad Nae2

1 Distributed Systems Group, Vienna University of Technology, Austria
2 Institute of Computer Science, University of Innsbruck, Austria

emails: truong@infosys.tuwien.ac.at,

{tf, brunner, robert, vlad}@dps.uibk.ac.at

Abstract

The performance analysis services in the K-WfGrid project aim at pro-
viding online information about the performance of Grid workflows as
well as Grid resources involved in the workflow execution. Such perfor-
mance information provides not only to the user insights into the execu-
tion of workflows but also to the K-WfGrid middleware services, e.g.,
workflow execution and scheduler, knowledge about the performance
for semi-automatically constructing and executing workflows. In this
paper, we summarize the development of DIPAS, a novel integrated
system which supports online performance monitoring and analysis of
service-based workflows. DIPAS provides a Web portal for the user
and offers open interfaces for workflow middleware service to conduct
performance monitoring and analysis of Grid workflows, thus substan-
tially simplifying the way the user and the middleware service interact
with the workflow performance tool. DIPAS introduces several nov-
elties by supporting performance monitoring, analysis, and search for
performance problems of advanced workflows composed from Web/Grid
services at multiple levels of abstraction and by unifying the analysis
of Grid workflows and infrastructure into a single system.

1 Introduction

The K-WfGrid project [7] aims at supporting semi-automatic composition of
Grid workflows based on Grid and Web services and execution of these workflows
in the Grid environment. In doing so, the K-WfGrid system relies on various
sources of information such as workflow knowledge, user input, and of course,
performance information of Grid workflows and resources on which the workflows
are executed. Such performance information is required not only after workflows
finish their execution but also during runtime. The performance information
is an important source from which semi-automatic workflow composition and
execution can be supported. However, providing performance information for
Grid workflows is not a trivial task as it requires us to be able to monitor many
different services, integrate monitoring information from servies, and analyze the
information and present the result to not only the end-user but also the workflow
middleware service.

To fulfil the above-mentioned requirements, in K-WfGrid project, we have
developed a distributed performance analysis service for Grid workflows. DI-
PAS – our performance analysis service for K-WfGrid – is able to support online
workflow execution tracing, performance overhead analysis, and search for per-
formance problems for Grid workflows, and to visualize the performance results
in a Web portal. This paper summarizes our results in developing DIPAS by
presenting and illustrating main features of DIPAS. Further detailed techniques
implemented in DIPAS can be found in [19, 2, 20, 22].

The rest of this paper is organized as follows: Section 2 presents the ar-
chitecture of the distributed performance analysis system. Performance data
representations and interfaces are discussed in Section 3. We outline main per-
formance analysis features in Section 4. We discuss how workflow middleware
services invoke performance analysis features in Section 5. The monitoring and
analysis portal is described in Section 6. Section 7 discusses related work and
Section 8 summarizes the paper.

2 Integrated Architecture for Workflow Performance Mo-

nitoring and Analysis

The K-WfGrid DIPAS (Distributed Performance Analysis Service) controls the
monitoring and instrumentation service, conducts the performance analysis of
workflows at runtime, and provides performance metrics to clients. DIPAS sup-
ports both the user and the workflow middleware service. It collects the data
dynamically from services running in distributed Grid sites, analyzes perfor-
mance and monitoring data, and visualizes the performance results in a Web
portal.

DIPAS includes three main parts: DIPAS Portal, DIPAS Portlets/PortletSer-
vices and DIPAS Gateway. The DIPAS portal provides a single place for the user
to conduct the performance monitoring and analysis of Grid infrastructure and
workflows. This portal is built on portlet and Java technologies. It provides
various features for analyzing and visualizing performance data of both work-
flows and resources. The core component of the portal is a Java-based GUI for
performance trace visualization, overhead analysis and search for performance of
workflows. The DIPAS portal is deployed into a web container based on Tomcat
[1]. The DIPAS Portlet/PortletServices are implemented by using Gridsphere
[13]. These portlets process user-specified performance requests through web
interfaces and generate contents displayed in the portal. In our implementation,
DIPAS Portlets/PortletServices are used to provide monitoring data of Grid in-
frastructure to the portal. The DIPAS Gateway is the central component of our
performance analysis and search for performance problems. A DIPAS Gateway
is implemented as a WSRF service [11] based on GT4 [12]. A DIPAS Gate-
way acts as a mediator between the portal and various other K-WfGrid services
(e.g., GOM – Grid Organizational Memory [4], GEMINI – Grid Monitoring
and Instrumentation Service [3], GWES – Grid Workflow Execution Service [5])
involved in the performance monitoring and analysis of workflows. Moreover,

it implements the performance overhead analysis and search for performance
problems.

Fig. 1: The K-WfGrid performance analysis and visualization system.

3 Performance Data Representations and Languages

In K-WfGrid, workflows are executed by GWES which is monitored by GEMINI.
Considering complex interactions among various services (e.g., GWES, GEMINI
and DIPAS) involved in the performance analysis of Grid workflows, we have to
focus on the development of data representations and interfaces between these
services in order to simplify the interoperability among different services. Our
approach in ensuring smooth integration among different services relies on stan-
dard interfaces. To this end, firstly our services are built based on Web/WSRF
technologies thus they can provide well-defined interfaces, e.g., based on WSDL.
Secondly, we define common data representations to describe various types of
monitoring data and common languages to describe various types of performance
monitoring and analysis requests by using XML. Using Web/WSRF interfaces
with XML-based data representations/requests, we could achieve the commu-
nication and data exchange interoperability among different services. In our

<MonitoringData dataTypeID="wfa.event"

resourceID="truong-03331c50-4537-11da-953e-e3f268ddc24d">
<event>

<eventname>activity_created</eventname>

<eventtime>1130231357715</eventtime>
<eventdata>

<attrname>ACTIVITY_NAME</attrname>
<attrvalue>ctm_apec_transition_area_odm-flw</attrvalue></eventdata>

<eventdata>

<attrname>ACTIVITY_ID</attrname>
<attrvalue>truong-03331c50-4537-11da-953e-e3f268ddc24d-0000000002</attrvalue>

</eventdata>
<eventdata>

<attrname>TRANSITIONID</attrname>
<attrvalue>ctm_apec_transition_area_odm-flw</attrvalue></eventdata>

<eventdata>

<attrname>ENDPOINTURL</attrname><attrvalue>http://grid02.softeco.it/Traffic
FlowCalculator/services/TrafficFlowCalculator</attrvalue>

</eventdata>
<eventdata>

<attrname>WSDLURL</attrname>

<attrvalue>http://grid02.softeco.it/TrafficFlowCalculator/wsdl/TrafficFlow
Calculator.wsdl</attrvalue>

</eventdata>
<eventdata>

<attrname>OPERATIONNAME</attrname>
<attrvalue>calculateTrafficFlow</attrvalue>

</eventdata>

</event>
</MonitoringData>

Fig. 2: Example of workflow events.

work, we have defined a rich set of schemas for describing workflow events, per-
formance metrics, machine information [18] as well as instrumentation requests
and application structure representations [9], etc. We briefly discuss the most
relevant monitoring data representations and performance request languages in
the following.

XML representations for performance and monitoring data: to fa-
cilitate the performance data exchange, in our system, each type of performance
and monitoring data is specified by an XML schema and is identified by a unique
name. Monitoring information is associated with a resource to be monitored.
Thus, a message containing monitoring data of a monitored resource (e.g. ma-
chine, network path, code region) will consist of information about the unique
data type name, the resource identifier, and detailed performance data. For ex-
ample, Figure 2 gives a snapshot of a monitoring data related to an execution
status of a workflow activity. The monitoring data includes an event named
activity created with the time at which the event occurs. Detailed informa-
tion associated with the event is described by eventdata elements that describe
various types of information such as activity name and ID, URL of the Web
operations, the operation that the activity invokes, etc.

Performance data query and subscription requests: the analysis ser-
vice needs to access various types of monitoring data from the monitoring ser-
vices. Therefore, a well-defined language for specifying monitoring data request

will simplify the integration among different services. We have defined a per-
formance data query and subscription (PDQS) language [19, 20]. Using PDQS,
requests expressed will be used in service interfaces for data query and sub-
scription. PDQS allows us to specify the type of monitoring data associated
with a monitored resource, the duration during which a subscription is valid,
filter for the content of performance data, and the aggregation of requested data
(e.g., MIN and MAX). Data filter in PDQS is expressed in XPath/XQuery [24]
and based on specific data representations. Note that while we define a generic
PDQS language, it is dependent on a specific implementation how PDQS is sup-
ported. For example, in K-WfGrid GEMINI [3], filters and aggregation features
have not been supported. Furthermore, in K-WfGrid, PDQS requests could be
constructed based on OWL [15] descriptions of monitoring data published in the
K-WfGrid GOM [4].

Workflow analysis request language: one of the main issues in the
K-WfGrid project is that performance analysis support is targeted not only to
the end-user but also to the middleware services such as workflow composition
and execution services. Therefore, we have to define a generic means based on
that both supporting tools for end-user and the workflow middleware services
can interact with performance analysis components in the similar fashion. To
this end, a novel workflow analysis request language (WARL) [19, 20] has been
devised. WARL allows any client to specify (i) constraints on objects to be ana-
lyzed, (ii) performance overheads to be analyzed and (iii) performance problem
specifications. Constraints basically consist of a set of workflow concepts being
monitored and analyzed, and their properties. In K-WfGrid, workflow concepts
can be the entire workflow, a workflow region or an activity. Performance over-
heads that should be analyzed and provided are given by a set of metrics, each
identified by a unique name. Performance problem specifications include a set
of performance conditions, each condition includes a metric name, an operator
(e.g., greater than or less than), and a value (e.g., indicating a threshold).

4 Performance Analysis and Visualization for Workflows

The web portal is the main interface through which the user conducts the moni-
toring of the Grid infrastructure and the performance analysis of Grid work-
flows. DIPAS supports four main features: infrastructure monitoring, workflow
execution tracing, workflow performance overhead analysis, and search for per-
formance problems.

Infrastructure monitoring: infrastructure monitoring is conducted
through the DIPAS Portal that supports the user to query and subscribe interes-
ting monitoring data of Grid infrastructure. The portal interacts with different
services, using portlets and portlet services which retrieve the monitoring in-
formation from the monitoring service chosen. The portlets are used to obtain
the input from the user, process the input and output the data when the re-
sult is returned from the different services. Portlet services are used to store
the requests and the output for a user so that the user can access this data

later on, after logging out from the system. When logging into the system, the
user can access the data that has been processed previously. The portal is devel-
oped based on Gridsphere [13] which is an open-source framework for developing
portlet-based Web portal for the Grid. We have implemented several portlets
to access different types of monitoring data provided by the K-WfGrid GEMINI
[3] and SCALEA-G [21] and to visualize the performance results in the por-
tal. Furthermore, we have also supported dependability analysis for K-WfGrid
services [23].

Workflow execution tracing: we support tracing workflow execution on-
line. The user can request DIPAS Gateway to provide the existing workflows
being executed or to be executed. Then, the user can select one of the existing
workflows and start the monitoring of the workflow. The status of the work-
flow activities will be updated in the visualization when the execution status
changes. During the execution of the workflow, the user can conduct an online
performance and monitoring analysis. To do all these actions, the portal will
communicate with the DIPAS Gateway, which interacts with the other services
involved in the performance monitoring and analysis.

Workflow performance overhead analysis: performance of Grid work-
flows is analyzed based on well-defined overhead metrics. In doing so, clients can
prepare a WARL-based request and send the request to the DIPAS Gateway.
The resulting overhead will be computed by the Overhead Analysis Component

which is a part of DIPAS Gateway. The overheads are determined based on the
events and the workflow graph. Events are retrieved from GEMINI whereas the
workflow graph is built based on workflow description obtained from GWES. The
performance result will be described using XML representation and returned to
the client.

Search for performance problems: during runtime of a workflow, per-
formance problems of the workflow can be checked based on performance con-
straints established by the client. Clients can send analysis requests, described in
WARL, to search for performance problems. These requests are then processed
by the Performance Search Component which is a part of DIPAS Gateway. This
component analyzes the performance of the workflows (running or completed)
and reports performance problems, if any, to the client/user during runtime.
Search for performance problems can be applied to both individual activities
and workflow regions.

5 Invoking Performance Analysis Features inside Work-

flow Middleware

Since performance analysis services offer WSRF operations and accept XML-
based requests, it is relatively simple to invoke performance analysis features
inside workflow middleware services, e.g, for supporting runtime adaptation of
workflow execution. Figure 3 presents the main service operations of DIPAS
Gateway that can be invoked by any middleware service to control the perfor-
mance analysis of workflows.

public String analyze(AnalysisRequestMessage request) throws RemoteException;
public DataEntries getResult(String resultID) throws RemoteException;
public CancelResultResponse cancelResult(String resultID) throws RemoteException;

Fig. 3: Main service operations used to control the performance analysis.

In DIPAS, a workflow middleware service can describe its performance re-
quest by using AnalysisRequestMessage which can be used to specify different
requests, e.g. PDQS- and WARL-based requests using the same representation.
The middleware service can specify (i) the content of the request whose represen-
tation is dependent on the language of the request, (ii) the language of the request
(PDQS or WARL), and (iii) the command (e.g, query/subscribe monitoring data
or analyze performance overhead/performance problems). Then, the middle-
ware service can invoke the operation analyze to ask DIPAS to conduct the re-
quest. The performance information can be retrieved by invoking the operation
getResult. Depending on specific request, the performance analysis can be con-
ducted over a period of time. During the analysis, the middleware service can ask
DIPAS stopping the analysis by calling cancelResult operation. For example,
Figure 4 presents a code excerpt that is used to subscribe all events of a workflow
identified by the ID truong 96eeb880-125c-11db-a105-ce90a766c196 during
the execution of the workflow. Based on the resulting events, the middleware
service can react accordingly, for example, to reschedule the execution of an
activity.

6 Integrated Performance Monitoring and Analysis Portal

In this section, we illustrate some features of our performance analysis portal.
Figure 5 presents the portal for analyzing the availability of services and com-
putation resources. Monitored resources, including Web/WSRF services, can
be selected and their availability over a certain period of time can be analyzed.
Results from the availability analysis can be used by the K-WfGrid scheduler
and GWES in order to plan the execution of workflows.

Figure 6 presents the main portal through which the user can conduct the
performance monitoring and analysis of workflows. A workflow and its regions
are visualized in Workflow Visualization and the Workflow Regions panes,
respectively. The Workflow Regions pane shows to the user the structured view
of workflows that includes workflow regions like branching, loop or sequence,
showing how activities are mapped together in the workflow. During runtime of
a workflow, execution status of activities being executed will be updated in the
Workflow Visualization pane. During runtime activity execution phases, such
as queueing or processing, of activity instances are displayed, in detail, in the
left pane of Figure 6. When observing the workflow execution at runtime, the
user can select an activity and examine in detail performance metrics associated
with the activity. Furthermore, the user can also specify performance analysis

//example of pdqs, when subscription time =0, the subscription

//will be finished when the workflow execution finishes.

String pdqsRequest =<?xmlversion=\"1.0\" encoding=\"UTF-8\"?>

<PDQS>
<dataTypeID>wfa.event</dataTypeID>

<resourceID>
truong_96eeb880-125c-11db-a105-ce90a766c196

</resourceID>

<subscriptionTime><from>0</from><to>0</to>
</subscriptionTime>

</PDQS>";
...

//create an analysis request message
AnalysisRequestMessage message = new AnalysisRequestMessage();
//specify the PDQS language

message.setLanguage("PDQS");
//fill the content

message.setContent(pdqsRequest);
//subscribe data
message.setCommand("COMMAND_SUBSCRIBE");

//call the analysis service
final String resultID = resource.analyze(message);

//if result is not null, we have data
if (resultID!=null) {

//update the current monitored workflow
boolean poll =true ;
...

while (poll) {
DataEntries entries= resource.getResult(resultID);

//no more data
if (entries==null) {

poll =false ;

cancel();
// end Timer if no more data

}
//get the result

String [] results=entries.getEntry();
for (int i=0; i <results.length;i++) {

DataEntries entries= resource.getResult(resultID);

...
}

...

Fig. 4: Example of code excerpt used to request performance information.

requests such as search for performance problems or overhead analysis, and
apply the requests to any activity. Figure 7 shows an example of performance
problems associated with workflow regions Branching0 and Loop0. Figure 8
presents all performance metrics, including performance overhead, associated
with a workflow. Performance metrics are represented a breakdown tree which
allows the user to examine in detail which factors strongly influence on the
performance of the workflow.

7 Related Work

Supporting performance analysis in existing business workflow systems is lim-
ited. With the WebLogic Process Integrator [8] the user can examine status of

Fig. 5: Availability analysis portal.

Fig. 6: K-WfGrid performance visualization portal for workflows.

workflow instances. However, WebLogic Process Integrator monitoring is lim-
ited to the activity level. The Web Service Navigator [16] provides visualization
techniques for Web service based applications.

Although many Grid workflow systems exist, as shown in [25], there is a lack
of monitoring and analysis tools for workflows of Grid/Web services. P-GRADE
[14] supports tracing of workflow applications. In contrast to K-WfGrid, it does

Fig. 7: Example of performance prob-
lems.

Fig. 8: Example of performance over-
heads.

not support cyclic and Web service-based workflows. Taverna Workbench [17]
also monitors status of activities within Grid workflows, but provides informa-
tion in simple tables. We notice that knowledge-based description for monitoring
data is not in the focus of most performance tools. Considering the complexity of
Grid workflows, metrics have to be well-described for extracting knowledge from
monitoring data. The OntoGrid project [6] also uses knowledge gained from
monitoring data to debug workflows, but not to monitor and analyze the per-
formance. K-WfGrid performance monitoring and analysis services differ from
these tools in many aspects. Our services are WSRF-based services, supporting
online performance overhead analysis and detection of performance problems.

Many K-WfGrid monitoring and analysis methods and concepts are related
to those in ASKALON [10] because they are contributions of the ASKALON
team to the K-WfGrid project. However, K-WfGrid supports workflows of
Web/Grid services while ASKALON works with workflows of C/Fortran-based
scientific applications. As a result, performance analysis techniques in K-WfGrid
are quite different from those in ASKALON. Also K-WfGrid provides a Web por-
tal for conducting performance monitoring and analysis that is not available in
ASKALON.

8 Conclusions and Future Work

In this paper, we have briefly presented main features of the K-WfGrid perfor-
mance analysis and visualization system for Grid workflows. Our performance
analysis system not only supports the end user but also the middleware to con-
duct the performance analysis of workflows at runtime. Various features such
as performance execution tracing, workflow performance overhead analysis and
search for performance problems have been implemented. We have discussed
how we facilitate the complex integration among different services involved in
the performance analysis of a Grid workflows. Part of the work mentioned in
this paper has been discussed in [19]. Technical details and usage of DIPAS are

presented in [20, 22]. Further information about the K-WfGrid DIPAS and its
implementation can be obtained from [2].

Acknowledgements. The work described in this paper is supported by the Eu-
ropean Union through the IST-2002-511385 project K-WfGrid. We are grateful
to the support of our colleagues in the K-WfGrid consortium and Simon Oster-
mann.

References

1. Apache Tomcat, http://tomcat.apache.org/.
2. DIPAS (Distributed Performance Analysis Service for Grid Workflows),

http://www.dps.uibk.ac.at/projects/kwfgrid/.
3. K-WfGrid GEMINI, http://gemini.icsr.agh.edu.pl/.
4. K-WfGrid GOM (Grid Organizational Memory), http://gom.kwfgrid.net/web/

space/Welcome.
5. K-WfGrid GWES (Grid Workflow Execution Service), http://www.

gridworkflow.org/kwfgrid/gwes/docs/. Last accessed: 5 June, 2007.
6. Ontogrid project, http://www.ontogrid.net.
7. The K-WfGrid Project. http://www.kwfgrid.eu. Last access: 06 June, 2007.
8. WebLogic Process Integrator Overview, http://edocs.beasys.com/wlpi/

wlpi11/studio/index.htm.
9. Bartosz Balis, Hong-Linh Truong, Marian Bubak, Thomas Fahringer, Krzysztof

Guzy, and Kuba Rozkwitalski. An Instrumentation Infrastructure for Grid
Workflow Applications. In International Symposium on Grid Computing, High-

Performance and Distributed Applications (GADA06), LNCS, 2-3 November
2006.

10. Peter Brunner, Hong Linh Truong, and Thomas Fahringer. Performance moni-
toring and visualization of grid scientific workflows in askalon. In Michael Gerndt
and Dieter Kranzlmüller, editors, HPCC, volume 4208 of Lecture Notes in Com-

puter Science, pages 170–179. Springer, 2006.
11. Ian Foster el al. Modeling Stateful Resources with Web Services. Specification,

Globus Alliance, Argonne National Laboratory, IBM, USC ISI, Hewle tt-Packard,
January 2004.

12. Globus Project. http://www.globus.org.
13. GridSphere Portal Framework. http://www.gridsphere.org.
14. P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton, and

G. Gombas. P-GRADE: a Grid Programming Environment. Journal of Grid

Computing, 1(2):171–197, 2003.
15. OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/.
16. Wim De Pauw, Michelle Lei, Edward Pring, Lionel Villard, Matthew Arnold,

and John F. Morar. Web services navigator: Visualizing the execution of web
services. IBM Systems Journal, 44(4):821–846, 2005.

17. Taverna, http://taverna.sourceforge.net/. Last access: 06 June, 2007.
18. Hong-Linh Truong. Performance Service Interfaces and Data Rep-

resentation – Developer Manual, October 2006. K-WfGrid Deliver-
able. http://www.dps.uibk.ac.at/projects/kwfgrid/deliverables/

KWF-WP3-UIBK-v1.0-DRDeveloperManual.pdf.

19. Hong-Linh Truong, Peter Brunner, Thomas Fahringer, Francesco Nerieri, Robert
Samborski, Bartosz Balis, Marian Bubak, and Kuba Rozkwitalski. K-WfGrid
Distributed Monitoring and Performance Analysis Services for Workflows in the
Grid. In 2nd IEEE International Conference on e-Science and Grid Computing,
Amsterdam, The Netherlands, 4-6 Dec 2006. IEEE Computer Society.

20. Hong-Linh Truong, Peter Brunner, Vlad Nae, and Robert Samborski. Per-
formance Analysis Service – Developer Manual, October 2006. K-WfGrid
Deliverable. http://www.dps.uibk.ac.at/projects/kwfgrid/deliverables/

KWF-WP3-UIBK-v1.1-PASDeveloperManual.pdf.
21. Hong-Linh Truong and Thomas Fahringer. SCALEA-G: a Unified Monitoring and

Performance Analysis System for the Grid. Scientific Programming, 12(4):225–
237, 2004. IOS Press.

22. Hong-Linh Truong, Robert Samborski, and Peter Brunner. Perfor-
mance Analysis Service – User Manual, October 2006. K-WfGrid De-
liverable. http://www.dps.uibk.ac.at/projects/kwfgrid/deliverables/

KWF-WP3-UIBK-v1.1-PASUserManual.pdf.
23. Hong-Linh Truong, Robert Samborski, and Thomas Fahringer. Towards a frame-

work for monitoring and analyzing qos metrics of grid services. e-science, 0:65,
2006.

24. XML Path Language. http://www.w3.org/TR/xpath.html.
25. Jia Yu and Rajkumar Buyya. A taxonomy of workflow management systems for

grid computing. Journal of Grid Computing, 3(3-4):171–200, September 2005.

GEMINI: Generic Monitoring Infrastructure for
Grid Resources and Applications

Bartosz Balis1, Marian Bubak1,2, and Bart lomiej Labno2

1 Institute of Computer Science, AGH, Krakow, Poland
2 Academic Computer Centre CYFRONET AGH, Krakow, Poland

Abstract

We present GEMINI, a Generic Monitoring Infrastructure for the Grid.
We focus on monitoring of distributed Grid workflows with GEMINI,
the most challenging case for monitoring. After presenting GEMINI
architecture, and its usage in the K-Wf Grid Project, we describe the
problem of distributed collection of monitoring data concerning a mon-
itored workflow, including a proposition of a distributed monitoring
data collection protocol. We also describe and propose a solution for
the problem of correlation of workflow monitoring data. We conclude
with the example of monitoring of the Coordinated Traffic Management
workflow.

1 Introduction

This paper presents GEMINI (GEneric Monitoring INfrastructure) – a moni-
toring framework for the Grid. Unlike most existing monitoring solutions for
the Grid [9] [15], we propose an integrated monitoring system for arbitrary data
sources, notably infrastructure and applications. We provide a comprehensive
support for monitoring of Grid workflows, including a standard instrumentation
service for fine-grained, dynamic and selective instrumentation. GEMINI also
defines standard interfaces, protocols and data representations, based on XML
with semantic ontology-based annotations, which are indispensable elements in
a modern computation infrastructure, oriented towards loosely-coupled services
and knowledge.

Many aspects of GEMINI have been presented in our previous publications
[1] [3] [18]. This paper concentrates on the aspects of monitoring of distributed
Grid workflows with GEMINI not presented so far. Monitoring of Grid workflows
is the most challenging case for monitoring, both conceptually and technically.
Grid Workflows are (1) distributed across multiple sites, (2) loosely coupled in
space and time, (3) composed of multiple computation layers, (4) heterogeneous
with respect to the programming language, execution platform and virtualiza-
tion technology. All those characteristics are challenging from the point of view
of monitoring of running workflows (aka experiments). Those challenges concern
data collection and correlation, instrumentation, and standardization of inter-
faces, protocols and data representations to provide a layer of abstraction on top
of different technologies, programming languages and platforms. In this paper,
we focus on workflow monitoring data collection and correlation.

In Section 2 the architecture of GEMINI is presented, while in Section 3
a sample deployment of GEMINI in the K-Wf Grid Project is described. Section
4 focuses on the collection of monitoring data in GEMINI. Section 5 describes
the problem of workflow monitoring data correlation. A monitoring example for
a Coordinated Traffic Management (CTM) workflow is presented in Section 6.

2 GEMINI Architecture

Architecture of GEMINI is shown in Fig. 1. A Monitor is an entity one of
which is usually deployed at each site, and which exposes monitoring system
functionality. Monitors manage underlying Sensors and Mutators whose task
is the actual collection of monitoring events and performing manipulations on
monitored objects, respectively. Monitoring events are generated by the instru-
mentation placed in the code of applications. A Directory Service is an external
system to which Monitors can advertise themselves as producers of monitoring
data for specific resources. Consumers refer to the Directory Service to discover
appropriate Monitors.

Sensors and Mutators are collectively referred to as Local Monitors, as they
usually reside locally with respect to the monitored resources. Their presence is
justified by both functional and non-functional reasons:

1. Some operations might not be feasible to perform remotely, e.g., process
manipulations or access to some process-related information.

2. When efficiently implemented, local monitors improve performance of data
collection, e.g. by buffering and aggregation of events. The additional
processing caused by another process on the node is easily outweighed by
the elimination of other processing, e.g., the execution of network protocol
stacks.

There are three interfaces involved in the monitoring system: (1) the pro-
ducer interface, (2) the consumer interface, (3) and the mutator interface. The
producer interface is used to request the monitoring data. This data can be
pushed to consumers via the consumer interface. The mutator interface can
perform various types of manipulations. In GEMINI, we support one type of
mutator functionality expressed by the instrumentation interface.

A Monitor exposes two services – the Monitoring Service and the Instrumen-
tation Service – which implement the producer and the instrumentation inter-
face, respectively. Those services are implemented as Globus Toolkit 4 WSRF
ones1. The producer and instrumentation interfaces are also implemented by
Sensors and Mutators, respectively. However, they are exposed in a more tightly
coupled technology, ICE (Internet Communication Engine)2 in order to improve
performance of data transfers. Also for performance reasons, the consumer in-
terface is implemented in ICE.

The producer interfaces is based on a producer protocol defined by PDQS
(Performance Data Query Subscribe), an XML-based language for specification

1WS-Resource Framework, http://www.globus.org/wsrf/
2http://www.zeroc.com

Monitor

Consumer Interface

Monitoring Service

Tool

Consumer Interface

Sensor

Producer Interface

Events

<<external>>

Directory Service

Instrument

Instrument

Query &

Subscribe Events

Mutator

Instrumentation Interface

Query &

Subscribe Events

Application

Instrumentation

Events

Enable/disable

instrumentation

Producer Interface

Consumer Interface

Events

Instrumentation

Service

Instrumentation

Interface

Fig. 1: Architecture of the GEMINI monitoring infrastructure.

of monitoring data requestes. A monitoring request typically contains the fol-
lowing elements:

• type of request (query or subscribe)
• idenfitication of the monitored resource
• monitoring data type
• subscription period (only for the subscribe request)
PDQS allows to express two types of requests: query and subscribe. A query

for monitoring data synchronously returns the requested data. A subscription
request, in contrast, allows to specify a subscription period in which the monitor-
ing data will be asynchronously delivered whenever it occurs, via the consumer
interface.

The monitoring data in the subscription mode is in fact delivered through
Publish/Subscribe subscription Mediators (P/S Mediators). A single mediator is
usually assigned to serve as a communication channel for either a given monitored
workflow, or all data from a given site. Mediators are implemented as ICE Storm

Events

Tool

Consumer Interface

Producer

Instrumentation

Events

Producer

Instrumentation

Events

P/S Mediator

Publish interface

Producer

Instrumentation

Events

Subscribe interface

Fig. 2: Data transfer with a publish/subscribe mediator.

services which allow for event subscription and notification based on topics.
Fig. 2 presents an example of data transfer with a mediator.

The role of the mediator is twofold:
1. As with all publish/subscribe channels, to decouple data producers from

data consumers.
2. As a data-transfer relay component. Since the monitored data is, due

to performance reasons, transfered by means of low-level, tightly-coupled
communication channels, communication between producers and consumers
across firewalls or private networks may pose a problem. In such cases, the
mediator channels could be deployed at a neutral, public location to make
the communication possible, at some performance penalty.

The instrumentation interface realizes the instrumentation protocol defined
by the WIRL language (Workflow Instrumentation Request Language). WIRL,
as PDQS, is an XML-based language which can be used to specify instrumenta-
tion requests. An instrumentation request consists of the following elements:

• type of request (get standard intermediate representation, enable/disable
instrumentation)

• specification of application’s processing unit to which the request should
be applied

• instrumentation specification (for enable/disable instrumentation): which
code regions should be affected and the position where the instrumentation
should be applied (before or after a code region)

The instrumentation is dynamic and selective, i.e. we can dynamically re-
quest to enable or disable the instrumentation for selected parts of the applica-

GMond

OCM-G

MPI Application

DIPAS

Sensor

Sensor

Instrumentation

Sensor

GMetad

GMond

Ganglia

Service

Host Host

Host

GOM

Monitor Monitor

Sensor

Monitor

GEMINI
components

site
boundaries

publish /
discovery

Monitoring
request and
data flow

Monitor

Sensor

Instrumentation

Instrumentation

Service

invoke

Fig. 3: Sample deployment of GEMINI in K-Wf Grid.

tion. In order to enable this, the instrumentation interface allows to obtain an
abstract specification of the application’s structure expressed as a list of code re-
gions in an XML-based language SIRWF (Standard Intermedate Representation
for WorkFlows), an extension of SIR [16]. More information about instrumen-
tation in GEMINI can be found in [3].

3 GEMINI in K-Wf Grid

In Fig. 3, a sample deployment of GEMINI in the K-Wf Grid Project3 [7] is de-
picted. In this project, GEMINI was used to collect monitoring data about Grid
infrastructure and workflows. The data was collected from such diverse sources,
as Ganglia system for monitoring of infrastructure elements, instrumented ser-
vices being parts of workflows or middleware, and legacy MPI applications in-
voked from services and monitored via the OCM-G [2] monitoring system. Grid
Organization Memory (GOM) [13] was used as a directory service.

Consumers of the monitoring data included the DIPAS portal [18], which
uses it for performance analysis of workflows, and Knowledge Assimilation Agent
(KAA) [4] which needs the monitoring data in order to extract knowledge about

3http://www.kwfgrid.eu

running workflows, e.g. for prediction of the execution time of individual service
instances.

4 Collection of Monitoring Data

This section describes how on-line collection of monitoring data for distributed
workflows is realized in GEMINI. As far as workflows are concerned, there are
some special circumstances and requirements concerning the collection of work-
flow monitoring data.

First of all, workflows (especially those running on the Grid) are distributed
and dynamic resources. The latter characteristic means that distinct parts of
a workflow emerge and disappear during the workflow’s execution. As a result,
new producers of the workflow’s monitoring data dynamically emerge at an
unpredictable time and location.

Second, it would be convenient for clients to request all monitoring data
concerning a workflow, including this generated in the past (before the client’s
request was issued) and that which will come in the future.

Those problems would not be severe unless we required on-line collection of
monitoring data, i.e. collection in which we are ensured to receive monitoring
events with a small delay with respect to time when they actually occurred.
If we did not require that, the traditional Grid Monitoring Architecture with
producers, consumers, and a directory service [17] would be perfectly sufficient.
The producers would register in the directory service as they would emerge.
They would also buffer the monitoring data in order to return it in the case some
clients asked for the past workflow events. The consumers would periodically
check the directory service for new producers in order to subscribe to them in the
case they emerge. Upon subscription they would receive archive data gathered
in buffers, and also subsequent events until the end of subscription.

However, it has been pointed out that traditional directory services are not
suitable for frequently changing resources [8]. While this is partially because
of technical reasons (slow technologies), in part it also is due to a conceptual
flaw of directory services related to their ‘inactive’ interfaces which force a client
interested in a resource to issue an explicit request. The authors propose thus
a proactive directory service which supports ‘push’ style of communication al-
lowing clients to receive notifications about resource changes. While this is
an interesting proposal which could present an adequate solution, the research
presented in the mentioned work is still not fully mature. We have therefore
concentrated on an alternative solution.

The requirement for on-line collection of workflow monitoring events can be
essentially brought down to the problem of fast and automatic resource dis-
covery. Automatic resource discovery means that the consumers are automat-
ically notified whenever new producers of monitoring data for a given workflow
appear, and a fast delivery of this notification is guaranteed.

Fig. 4 presents a distributed monitoring data collection protocol. For sim-
plicity, only producers and consumers are shown, not the real components of

M0 : Producer M1 : ProducerD0 : Directory Service C0 : Client

Register as producer for R0

M1 is already producer for R0

I have R0

Discover producer for R0

M1 is producer

subscribe(R0)

subscribe(R0,C0)

push(archive_events)

push(event)

push(event)

Producer for

Workflow R0

Producer for

Workflow R0

(main)

Fig. 4: Distributed monitoring data collection protocol.

GEMINI architecture (Monitors, Sensors, P/S Mediators).
In this example of monitoring a workflow R0, we have two producers of

monitoring data – M0 and M1. A Directory Service D0 in this protocol serves
a special purpose as a kind of data producer broker. Both M0 and M1 attempt
to register in D0 as producers for monitoring data for R0. However, only the
first one to come is actually elected as the ‘main’ producer, M1 in this example
(registration not shown). The others – M0 in this case – are returned information
that the producer is already M1. Thus, M0 reports to M1 that it is also
a producer of monitoring data for R0. When a client C0 discovers a producer for
workflow R0, it gets a reference to M1 and subscribes in it. M1 is responsible to
forward the subscription request to all remaining producers with a return handle
to client C0. The other producers (M0) start sending workflow events to the
consumer, beginning with the archive events stored in their local buffers.

In other words, in this protocol, resource discovery is partially up to an
external directory service, and partially within responsibilities of the monitoring
infrastructure itself. Thanks to this solution, the described protocol has the
following advantages:

• The client needs to discover data producers only once.
• The client also needs to connect to a single producer only.
• Automatic resource discovery is as fast as the request to the Directory

Service. This is thus faster than a registration of a new resource in and
a notification from the Directory Service. In fact, the Directory Service
could be replaced by a specialized, fast data producer broker.

• Though the Directory Service here must ensure mutually exclusive regis-
tration attempts (and thus it probably should be centralized), it will not
be a bottleneck, since the registration events are relatively rare.

• Since the first producer of data for a given workflow is elected as the ‘main’
producer, the overall scalability is guaranteed provided that workflows will
start execution at different, random places.

• Clients will obtain the complete workflow monitoring data, including the
archive one, i.e. that which was produced before the client made a sub-
scription request.

5 Correlation of Monitoring Data

The term correlation in the context of distributed systems has at least two
important meanings:

1. In distributed systems that use asynchronous messaging the problem of
matching a request with a response is called the correlation problem. The
solution is to use a unique correlation identifier, which should be the same
in the request and in the matching response. This solution is known as the
Correlation Identifier Pattern ([12], pp. 163-170).

2. In event notification or monitoring systems, the term event correlation de-
notes the process of detecting event patterns (aka global events, composite
events) in a number of seemingly unrelated events. For example, a detected
event pattern may reveal a possibility of a security attack.

In the context of workflows, correlation is mentioned in [5]. In general, a pro-
cess P (i.e. a workflow) may be orchestrated by multiple orchestration engines
Pk. The correlation problem is thus, according to the authors, to associate
different parts of process P executing in different Pk. However, distributed or-
chestration engines are not of our concern. We focus on a different problem.
For monitoring of workflows we shall define the correlation problem as follows:
Workflow monitoring data correlation problem is to associate differ-
ent pieces of monitoring data as parts of data related to the same
experiment.

This problem has been, of course, partially recognized. In [11], Grid Workflow
Identifiers (GID) are proposed. The GIDs should be created in a “workflow
originator” and “propagated to all workflow components”. While this is the right
way to go, it does not go far enough. The reason for this is that “workflows”
described in this work are not scientific workflows composed of services and
executed by a generic orchestration engine. Rather, a “workflow” is meant as
a sequence of different Grid “services” (such as portal, broker, replica manager)

whose coordinated cooperation results in execution of a job, which in turn does
the actual work, and later the results are retrieved.

This model of a ‘flat’ grid identifier is not sufficient for monitoring of
scientific workflows, whose execution needs the cooperation of many Grid ser-
vices as well, but which are themselves composed of many distinct parts, namely
activities, and invoked applications, the last often being separate legacy jobs,
which may well be parallel jobs, again composed of multiple distinct processes.

The correlation of workflow monitoring data must enable association of dif-
ferent pieces of monitoring data at their different levels in the workflow hierarchy,
for example events from “workflow W0, activity A1”, or “workflow W1, activity
A1, legacy job L2”. Consequently, for the purpose of monitoring we introduce
an Experiment correlation identifier which is characterized as follows:

1. Experiment Correlation IDentifier (ECID) is an extendable XML
document which is passed between different parts of executing scientific
workflow, as well as Grid services involved.

2. ECID should be included in each event produced by monitoring and it
should reflect the exact space location of the event in the executing
workflow.

3. ECID is extended on a handover of workflow’s execution control
from Pi to Pk, Pi and Pk being different, physically distinct, parts of
the executing workflow.

4. Actor responsible for extension of ECID on handing over the workflow
execution to task Pk is the initiator Ik of Pk; Ik is normally either the
orchestration engine or another workflow task Pi which invokes a subtask
Pk.

An example of an ECID for an experiment task’s subtask is shown below:

<ecid>
<experiment id="e1">

<task id="t1">
<subtask id="s1"></subtask>

</task>
</experiment>

</ecid>

Experiment correlation identifier is also important for request-reply cor-
relation. A client could request a subset of monitoring events that belong only
to a certain part of the workflow (e.g. MPI job L1 invoked from activity A3).
The hierarchical ECID enables the monitoring system to deliver only this subset
of events to the client, instead of making the client responsible for filtering.

The technical problem how to pass the Experiment Correlation Identifier to
workflow parts remains. Unfortunetaly, this problem is technology-dependent.
In the case of workflow activities implemented as web services this is actually
a specific case of a more general problem of passing context to web services.
Current web service implementations do not support context information in
a standard way. For pure, stateless web services, the only information passed to

an invoked service is via operation’s parameters. There are a few possibilities to
pass context information, as discussed in [6], for example:

• by extending service’s interface with additional parameter for context in-
formation,

• by extending the data model of the data passed to a service,
• by inserting additional information in the SOAP header, and reading it

from within the service.
None of those methods is nice and clean. The first one forces to extend the

interface of the service which is the least transparent option. The second one is
not transparent for the end user, either, and additionally is service-specific. The
third one is only possible if access to SOAP header is feasible, and it depends
on the implementation of the web service container. An additional option is to
use the state provided by a service, but this only works for services that support
state, e.g. WSRF-based ones.

However, the problem of context-aware web services has been recognized.
A Web Service Context Specification has been proposed [19] whose aim is to deal
with Web Service context in a standardized way. This specification supports
passing the WS context in the SOAP header and defines standardized XML
structures to do it.

Therefore, it is natural for us to also follow the SOAP header approach. The
workflow enactment engine used in our case – GWES (Grid Workflow Execution
Service) [14] inserts additional information to SOAP headers which is accessed
in the services (from instrumentation code) to obtain workflow and activity
identifiers.

For the legacy jobs, ECID is passed as command-line parameters. However,
in the case of MPI applications command line parameters might be passed only
to the master process. There are a few possibilities in this case. For example,
the master process can be instrumented to broadcast the correlation identifier
as the first operation after MPI Init. This is the solution we have chosen to
employ.

6 Monitoring Example – Coordinated Traffic Management
Workflow

To demonstrate workflow monitoring, we have chosen the Coordinated Traffic
Management (CTM) workflow constructed from application services provided
by Softeco Sismat within the K-WF Grid Project. This application targets
the computation of the emission of traffic air pollutants in an urban area and
has been developed in tight collaboration with the Urban Mobility Department
of the Municipality of Genoa, which provided a monolithic implementation of
the model for the pollutant emission calculations, the urban topology network
and real urban traffic data. The CTM application workflow has been divided
into several different steps in order to allow the semi-automatic composition of
services and the definition of a set of ontologies which describe the CTM domain

Fig. 5: CTM workflow.

and feed the system with the information needed for the proper selection and
execution of services [10].

The main CTM application functionalities are best route, traffic flow and air
pollutant emissions calculations. Data graphical representation in SVG format
is also supported. For monitoring, a complex use case was used. It consisted of
several executable transitions and three control transitions (Fig. 5).

The first activity in the workflow is the generation of a session ID. Next,
there are two activities done in parallel – the computation of start and end
zone district polygons. Subsequently, node coordinates for start and end are
computed, also in parallel. After that, a set of calculations is done for nodes
computed in earlier activities. Finally, computations responsible for calculating
path length, traffic flow and air pollutants emission follow. Results are also
written to the SVG format file, which is done in one of the activities.

During running of the above scenario monitoring data were acquired by in-
strumentation of the worklow enactment engine and workflow activities. For
each activity, several events were produced: when it was initialized, created,
went to the active state, at start and end of the actual running phase, and when
it has completed. Each of these events has a precise time of occurence. Activities
such as initialization, creation, activation and completion should be treated as
a point in time. The running state is treated as a period of time.

For visualization of the monitoring results, we have used the Jumpshot
tool4. To this end, events collected from GEMINI were translated to Jump-
shot’s SLOG-2 format. We can observe how the workflow was executed, how
much time each activity has taken, and when it was invoked. Fig. 6 presents
a global view showing all activities. However, due to the time scale, only the
running periods can be seen. Fig. 7 presents a zoom of a particular diagram
section to show more details – individual events can be seen now. Additionally,
windows describing individual bars (representing events and periods) are popped
up.

4See http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

Fig. 6: Monitoring results – global view.

Fig. 7: Monitoring results – detailed local view.

7 Summary

We have presented the use of the GEMINI infrastructure for monitoring of Grid
workflows. We have explained the role of GEMINI in the K-Wf Grid Project.
Next, we have focused on the problems of distributed data collection, and data
correlation. Currently we are working on an ontology-based monitoring data
model which can be used to represent a meaningful information about previously
running experiments, and the usage of this information to extract knowledge
about the experiments and the computing infrastructure.

Acknowledgements. The work described in this paper is supported by the
European Union through the IST-2002-511385 project K-WfGrid, and the Foun-
dation for Polish Science within the Domestic Grant for Young Scientists.

References

1. Balis, B., Bubak, M., Dziwisz, J., Truong, H.L., Fahringer, T.: Integrated Mon-
itoring Framework for Grid Infrastructure and Applications. In: Innovation and
the Knowledge Economy. Issues, Applications, Case Studies, Ljubljana, Slovenia,
IOS Press (2005) 269–276

2. Balis, B., Bubak, M., Radecki, M., Szepieniec, T., Wismüller, R.: Application
Monitoring in CrossGrid and Other Grid Project s. In: Grid Computing. Proc.
Second European Across Grids Conference, Nicosia, Cyprus, Springer (2004) 212–
219

3. B. Balis, H.-L. Truong, M. Bubak, T. Fahringer, K. Guzy, and K. Rozkwital-
ski. An Instrumentation Infrastructure for Grid Workflow Applications. In R.
Meersman and Z. Tari et al., editors, Proc. OTM 2006 Conferences, volume 4276
of Lecture Notes in Computer Science, pages 1305-1314, Montpellier, France,
November 2006. Springer.

4. Balogh Z., Gatial E., Laclavik M., Maliska M., Hluchy L.: Knowledge-based
Runtime Prediction of Stateful Web Services for Optimal Workflow Construc-
tion. Proc. of 6-th Intl. Conf. on Parallel Processing and Applied Mathematics
PPAM’2005, R.Wyrzykowski et.al. eds., 2006, LNCS 3911, Springer-Verlag, pp.
599-607, ISSN 0302-9743, ISBN 3-540-34141-2. Poznan, Poland.

5. G. Brown and R. Carpenter. Succesful Application of Service-Oriented Architec-
ture Across the Enterprise and Beyond. Intel Technology Journal, 8(4):345–359,
2004.

6. S. Brydon and S. Kangath. Web Service Context Information. https://

bpcatalog.dev.java.net/nonav/soa/ws-context/index.html, 2005. Accessed
20.06.2007.

7. M. Bubak, T. Fahringer, L. Hluchy, A. Hoheisel, J. Kitowski, S. Unger, G. Viano,
K. Votis, and K-WfGrid Consortium: K-Wf Grid – Knowledge based Workflow
system for Grid Applications. In Proc. Cracow Grid Workshop 2004, p.39, Aca-
demic Computer Centre CYFRONET AGH, ISBN 83-915141-4-5, Poland 2005

8. F. E. Bustamante, P. Widener, and K. Schwan. Scalable directory services using
proactivity. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE con-
ference on Supercomputing, pages 1–12, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

9. A. Cooke, A. Gray et al., R-GMA: An Information Integration System for Grid
Monitoring. In Proc. Tenth International Conference on Cooperative Information
Systems, volume 2888 of Lecture Notes in Computer Science, pages 462–481.
Springer, 2003.

10. T. Gubala, D. Harezlak, M. Bubak, M. Malawski, Semantic Composition of Scien-
tific Workflows Based on the Petri Nets Formalism. Proc. 2nd IEEE International
Conference on e-Science and Grid Computing, (Avaialble only on CD-ROM),
IEEE Computer Society Press 2006.

11. D. K. Gunter, K. R. Jackson, D. E. Konerding, J. Lee, and B. Tierney. Essential
Grid Workflow Monitoring Elements. In Hamid R. Arabnia and Jun Ni, editors,
Proc. 2005 International Conference on Grid Computing and Applications, GCA
2005, pages 39–45, Las Vegas, Nevada, USA, June 2005. CSREA Press.

12. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional, October 2003.

13. B. Kryza, J. Pieczykolan J. Kitowski: Grid Organizational Memory: A Versa-
tile Solution for Ontology Management in the Grid. In Proc. of 2nd Interna-
tional Conference on e-Science and Grid Computing, Dec. 4-6, 2006, Amsterdam,
Netherlands, (C) IEEE Computer Society Press. ISBN 0-7695-2734-5

14. Neubauer, F., Hoheisel, A., Geiler, J.: Workflow-based Grid Applications. Future
Generation Computer Systems 22 (2006) 6–15

15. N. Podhorszki, Z. Balaton, G. Gombas. Monitoring Message-Passing Parallel Ap-
plications in the Grid with GRM and Mercury Monitor. In: Grid Computing.
Proc. 2nd European Across Grids Conference, Nicosia, Cyprus, January 2004,
Springer.

16. Seragiotto, C., Truong, H.L., Fahringer, T., Mohr, B., Gerndt, M., Li, T.: Stan-
dardized Intermediate Representation for Fortran, Java, C and C++ Programs.
Technical report, Institute for Software Science, University of Vienna (2004)

17. B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and M. Swany.
A grid monitoring architecture. Technical Report GWD-PERF-16-2, Global Grid
Forum, January 2002.

18. Truong, H.L., Balis, B., Bubak, M., Dziwisz, J., Fahringer, T., Hoheisel, A.:
Towards Distributed Monitoring and Performance Analysis Services in the K-
WfGrid Project. In: Proc. PPAM 2005 Conference, Poznan, Poland, Springer
(2006) 157–163

19. Web Services Context Specification (WS-Context) Version 1.0. http://

docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.pdf, 2006. Downloaded
27.03.2007.

Grid Organizational Memory – Semantic
Framework for Metadata Management

in the Grid

Bartosz Kryza1, Jan Pieczykolan1, Marta Majewska2, Renata Slota2, Marian Babik3,

Adrian Toth3, Jacek Kitowski1,2, and Ladislav Hluchy3

1 Academic Computer Centre Cyfronet AGH, Krakow, Poland
2 Institute of Computer Science, AGH University of Science and Technology,

Krakow, Poland
3 Insititue of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract

The paper presents detailed description of the Grid Organizational
Memory architecture, a justification of its applicability in the context
of K-Wf Grid project, and gives a comparison of GOM with other exist-
ing semantic metadata solutions. Such additional components of Grid
Organizational Memory as administration interface, Protege extension
and semi-automatic service annotation tool are also presented.

1 Introduction

Grid Organizational Memory [1] is the central information and knowledge source
in the K-Wf Grid system [2]. It manages various kinds of metadata stored in
the form of OWL ontologies.

Grid Organizational Memory has been evaluated within the K-Wf Grid plat-
form by supporting both middleware level functionality such as infrastructure
monitoring as well as application level scenarios [3, 4], especially the ones in-
volved in workflow composition process.

The main motivation for using ontologies to annotate Grid resources was
to unify the metadata in the Grid environments through the use of one single
formalism – in this case Web Ontology Language. This allows for much richer
and complex annotation of resources which can span all aspects of the Grid (e.g.
use metadata about data or hardware resources to describe services) in the same
language (e.g. OWL). Whats more, unified metadata model allows application of
various emerging tools especially ontology reasoners which can grately improve
the processing of such information.

2 Grid Organizational Memory Architecture and Imple-
mentation

The main functionality of the GOM knowledge base is oriented towards support-
ing the semi-automatic workflow composition from services available in the Grid
[5]. This includes management of semantic descriptions of resources, data and

services as well as ontological representation of knowledge about the domains to
which the Grid is applied, which enable sufficiently rich semantic annotations of
data and services. The managed ontologies can be stored in persistent storage
and queried by standard query languages for RDF and OWL. Apart from the
knowledge base itself GOM has several accompanying tools that support several
typical use cases in the K-Wf Grid environment.

2.1 Architecture

Grid Organizational Memory is a knowledge base which was developed in order
to support the ontology separation scheme [6] (see Fig. 1). The first design choice
was to distribute the GOM in a similar fashion to how the ontology components
are separated [7]. The ontologies defining the Grid metadata can be divided into
ontology components according to the ontology separation scheme. Thus we
have a set of GOM Engine components, each running separately and managing
some part of the ontology space (e.g. ServiceRegistry for CTM application). The
access to the GOM Engines is provided through Proxy interfaces which contact
Engine Manager component which acts as a router for locating proper GOM
Engine instance for handling particular request. The administrators have control
over the GOM distributed infrastructure through the web-based GOM Admin
interface. The clients can also subscribe for specific events that are received by
some GOM Engine. Regular users can browse and manipulate the ontologies
through a proper Protege extension.

2.2 GOM Engine

Ontology components can be managed by a separate instance of GOM Engine
component, possibly distributed, which can be configured with such options as
persistent store and some DL reasoner [8]. This makes it possible to choose
the best configuration for each ontology component. Each ontology component
can be also published under proper URL thus giving clients easy access to the
ontology. Each GOM Engine accepts two different kinds of requests, namely
Events and Queries. The events describe a change or a set of changes that are
to be applied to the local ontology model called the State Model. The events
can include creation of some resource description (e.g. a full OWL-S service
description), a change (e.g. a change of individual property value) or removal
(e.g. a list of individuals to remove). The events are also stored in a log called
Event Model which allows to recreate the state of the ontology component from
any time from the past. The GOM Engine is based on plug-ins which allows for
simple extension of its functionality in terms of handling events, handling queries
creating state models with different reasoners and persistent storage systems. It
also can be deployed as a standalone service (without the whole infrastructure).

Fig. 1: Overall architecture of GOM.

2.3 Engine Manager

The Engine Manager is the main element of the GOM’s architecture. It is re-
sponsible for hosting a registry of available Deployer and GOM Engine instances
and provide methods facilitating looking up for references to them. It supports
such functionality as GOM Engines synchronization, locking, heartbeat mecha-
nism and event routing (see Fig. 2).

Fig. 2: Architecture of Engine Manager.

2.4 Event System

The ontologies managed by GOM can be updated by a special event system
designed for fine grained modifications of OWL ontologies what makes integra-
tion of GOM with other system components easier combined with mechanism of
subscription for change notifications. The system consists of 3 kinds of events:

• Create – which accepts sets of statements or OWL documents which are
directly added to the State Model. It is useful for simple addition of chunks
of knowledge (e.g. complete OWL-S service description)

• Change – Allows more fine grained change functionality. It is based on
change ontology which describes all possible changes that can be applied to
OWL ontology (e.g. ClassAddition, IndividualRemoval, IndividualProper-
tyValueModification, etc.)

• Remove – accepts list of statements that should be removed

2.5 GOM Admin

A special web based component (called GOM Admin) has been developed to
manage distributed deployments of GOM (see Fig. 3). It allows administrators
to start, stop and monitor status of running instances of GOM Engine compo-
nents.

(a) GOM Engine list. (b) GOM Engine statistics.

Fig. 3: Example GOM Admin screen shots.

2.6 GOM Tab

Another tool is GOM Tab plugin (see Fig. 4) for Protege environment which
enables manipulation of ontologies stored in GOM using Protege’s advanced
user interface and all its plugins for visualization of ontologies. A tool which

translates from Common Information Model schema to OWL ontologies enables
migration from legacy information systems. The prototype of the tool enables
users to generate OWL ontology of CIM schema and convert instances from a
CIM repository.

Fig. 4: GOMTab Protege interface.

2.7 WSRF2OWL-S

Several tools that support users in interacting with GOM have been developed.
First one, called WSRF2OWL-S [9, 10], has been developed to enable semi-
automatic generation of semantic descriptions of services. This tool supports
users by generating an OWL-S description of a service from its WSDL definition
and a mapping from WSDL to OWL which can be specified in a file or using a
GUI integrated into K-Wf Grid GridSphere portal (see Fig. 5).

3 Related Work

Some semantic Grid knowledge bases already exists. Tupelo 2 from NCSA [11], is
oriented towards archiving large scale metadata about scientific data. DRAGO
[12] provides advanced functionality of reasoning over P2P distributed knowledge
bases using C-OWL standard. OMII provides Grimoires [13] which is also a mod-
ular knowledge base, oriented towards managing semantic service descriptions
in a Grid setting. instanceStore [14] is optimized for storing massive amounts
of ontology individuals at the price of limited expressivenes and reasoning func-
tionality. PeerThing [15] is another P2P based semantic metadata repository
focusing on hardware and software annotation in the Grid based on OWL and
RACER reasoner.

(a) Service selection. (b) Annotation of concepts from WSDL.

Fig. 5: Example WSRF2OWL-S screen shots.

4 Conclusions and Future Work

The main achievements of this work include the definition of unified semantic
metadata model of the Grid called ontology separation scheme, design and de-
velopment of generic distributed knowledge base with an event system enabling
updating of managed ontologies and recovery of the state of the knowledge base
from any given time in the past from serialized history of incoming events and
development of Protege plug-in that enable easy interaction with the knowledge
base.

The main scientific innovations include the architecture of flexible knowledge
base framework, that can be optimally configured for a given kind of ontology,
development of WSRF2OWL-S tool which enhances current state of the art
by handling stateful Grid services and prototype implementation of CIM2OWL
translation tool and development of special protocol for interacting with OWL
ontologies, which allows the knowledge base to return a OWL document with a
consise subset of the ontolog that contains a semantic neighborhood of results
of a query.

Future work will include evaluation of different distribution models such as
P2P, improvement of performance of the system as well as integration of ontology
similarity algorithm for querying and updating the ontologies [16, 17, 18].

Acknowledgements. This reasearch has been done in the framework of EU
IST-2004-511385 K-Wf Grid project. The authors would like to thank the whole
project consortium for remarks and feedback during the development process.
AGH University of Science and Technology grant is also acknowledged.

References

1. Gom website – http://gom.kwfgrid.net.
2. K-wfgrid project – http://www.kwfgrid.eu.

3. Dutka, L., Kryza, B., Krawczyk, K., Majewska, M., Slota, R., Hluchy, L., and
Kitowski, J., Component-expert architecture for supporting grid workflow con-
struction based on knowledge, In Cunningham P. Cunningham M. (Eds): In-
novation and the Knowledge Economy. Issues, Applications, Case Studies. pp.
239-246, Vol. 2, IOS Press 2005.

4. Babik, M., Habala, O., Hluchy, L., Laclavik, M., and Maliska, M., Semantic grid
services in k-wf grid, In To appear in Proc. of the 2nd International Conference
on Semantics, Knowledge and Grid (SKG2006), IEEE Computer Society, Guilin,
China, 2006.

5. Krawczyk, K., Slota, R., Majewska, M., Kryza, B., and Kitowski, J., Grid or-
ganization memory for knowledge management for grid environment, In Bubak,
M., Turala, M., Wiatr, K. (eds): Proceedings of the Cracow Grid Workshop ’04,
pp. 109-115, ACC CYFRONET AGH, Krakow, Poland, 2005.

6. Kryza, B., Majewska, M., Slota, R., and Kitowski, J., Unifying grid metadata
representations through ontologies, In R. Wyrzykowski et.al. (eds) Proc. of 6th
Intl. Conf. on Parallel Processing and Applied Mathematics PPAM’2005, Poznan,
Poland; LNCS 3911, Springer-Verlag, pp.683-690, 2006.

7. Kryza, B., Pieczykolan, J., Babik, M., Majewska, M., Slota, R., Hluchy, L., and
Kitowski, J., Managing semantic metadata in k-wf grid with grid organizational
memory, In Bubak, M., Turala, M., Wiatr, K. (eds): Proceedings of the Cracow
Grid Workshop ’05, pp. 66-73, ACC CYFRONET AGH, Krakow, Poland, 2006.

8. Kryza, B., Pieczykolan, J., and Kitowski, J., Grid organizational memory: A
versatile solution for ontology management in the grid, In Proceedings of 2nd
International Conference on e-Science and Grid Computing, Dec. 4-6, 2006, Am-
sterdam, Netherlands, (C) IEEE Computer Society Press.

9. Babik, M., Hluchy, L., Kitowski, J., and Kryza, B., Wsrf2owl-s: A framework for
generating semantic descriptions of web and grid services, In Bubak, M., Turala,
M., Wiatr, K. (eds): Proc. of the Cracow Grid Workshop ’05, pp. 49-46, ACC
CYFRONET AGH, Krakow, Poland, 2006.

10. Babik, M., Hluchy, L., Kitowski, J., and Kryza, B., Generating semantic descrip-
tions of web and grid services, In To appear in Proc. of the 6th Austrian-Hun-
garian Workshop on Distributed and Parallel Systems, Springer, Innsbruck, Aus-
tria, 2006.

11. Tupelo 2 website, http://dlt.ncsa.uiuc.edu/wiki/index.php/tupelo_2.
12. Serafini, L. and Tamilin, A., Drago: Distributed reasoning architecture for the

semantic web., In Gómez-Pérez, A. and Euzenat, J. (Eds), ESWC, Lecture Notes
in Computer Science, vol. 3532, pp. 361–376, Springer, 2005.

13. Miles, S., Papay, J., Payne, T.R., Decker, K., and Moreau, L., Towards a protocol
for the attachment of semantic descriptions to grid services., In Dikaiakos, M. D.
(Ed.), European Across Grids Conference, Lecture Notes in Computer Science,
vol. 3165, pp. 230–239, Springer, 2004.

14. Horrocks, I., Li, L., Turi, D., and Bechhofer, S., The instance store: Dl reason-
ing with large numbers of individuals., In Haarslev, V. and Möller, R. (Eds),
Description Logics, CEUR Workshop Proceedings, vol. 104, CEUR-WS.org, 2004.

15. Heine, F., Hovestadt, M., and Kao, O., Towards ontology-driven p2p grid resource
discovery., In Buyya, R. (Ed.), GRID, pp. 76–83, IEEE Computer Society, 2004.

16. Pieczykolan, J., Kryza, B., and Kitowski, J. Semi-automatic creation of adapters
for legacy application migration, In Proceedings of International Conference on
Computational Science 2006, pp. 252-259, vol. 4, Springer, The University of
Reading, UK, Springer, 2006.

17. Kryza, B., Majewska, M., Pieczykolan, J., Slota, R., and Kitowski, J., Grid
organizational memory – provision of a high-level grid abstraction layer supported
by ontology alignment, The International Journal of FGCS, Grid Computing:
Theory, methods & Applications, Elsevier, 23(3):348–358, March 2007.

18. Slota, R., Zieba, J., Kryza, B., and Kitowski, J., Knowledge evolution supporting
automatic workflow composition, In Proceedings of 2nd International Conference
on e-Science and Grid Computing, Dec. 4-6, 2006, Amsterdam, Netherlands, (C)
IEEE Computer Society Press.

On Translation Common Information Model
to OWL Ontology

Marta Majewska1, Bartosz Kryza2, and Jacek Kitowski1,2

1 AGH-UST, al. Mickiewicza 30, 30-059 Krakow, Poland
2 Academic Computer Centre Cyfronet AGH, Nawojki 11, 30-950 Krakow, Poland

emails: {mmajew, bkryza, kito}@agh.edu.pl

Abstract

This paper presents our work on definition and development of Grid
resource ontology based on Common Information Model. The paper
presents issues of mapping the CIM model to Web Ontology Language
(OWL) standard. The paper contains also comparison of existing ap-
proaches to conversion of CIM to OWL. A tool is also mentioned that
performs the conversion of CIM schema and allows conversion of CIM
instances to OWL individuals.

1 Introduction

The need of unified semantic description of the various Grid aspects appeared
during the work on the knowledge based system for composing workflows for the
grid environment in the EU IST K-Wf Grid project [1], where OWL ontologies
were chosen for metadata descriptions of the Grid. The set of ontologies describ-
ing generic and domain specific features of the grid were gathered and integrated
for thematic areas of workflows, grid applications, services, data and resources.
However, the overall ontology for grid resource description was still an open is-
sue. At the field of modeling computer software and hardware resources already
exists a recognized standard – DMTF Common Information Model (CIM) [2].
As OWL [3] was a representation choice for the project ontologies, the problem of
the interoperability appeared. For providing ontology interoperability a mapping
from MOF [4] (CIM native representation language) to OWL was considered,
having in mind that the full reconciliation of the two formalisms originating
from the various backgrounds is challenging. Both CIM and OWL originate
from different research and development communities. CIM was designed and is
progressively developed by DMTF mainly for the purpose of hardware and soft-
ware resources description in the distributed environments. The unified CIM
information model was often used in computer network resource management
systems and large scale monitoring applications. CIM received substantial pop-
ularity at this field and is considered as a standard. CIM is a hybrid approach,
inspired by the object oriented modeling and database information modeling.
As it introduces the meta-data for annotating model classes and individuals, it
is partially not compliant with the UML methodology. MOF is the IDL plat-
form independent language for the CIM model representation. The CIM Schema
consists of particular Core, Common Models and developed by users Extension

Schemas. Shortly speaking, OWL is W3C recommended ontology language for
the Semantic Web. It exploits many of the strengths of Description Logics, in-
cluding well defined semantics and practical reasoning techniques. OWL offers
greater expressiveness of information content description then that supported by
XML, RDF, and RDF Schema, by providing additional vocabulary along with a
formal semantics. OWL has three increasingly expressive sublanguages: OWL
Lite, OWL DL, and OWL Full. However, the reconciliation of two formalisms
originating from the various backgrounds is challenging. Some features of CIM
originating from object oriented or database designing are difficult for transla-
tion to OWL. Likewise, some OWL characteristics, coming from the Description
Logic background do not found their equivalents in CIM or cause some mapping
attempts being hard.

2 Related Work

In this section, research papers and projects in the field of CIM ontology align-
ment with Semantic Web ontology standards are discussed. The authors of [5]
propose to use XML-based ontology language to define resource management
information for network management systems. They study advantages, which
such an ontology can provide to this area and postulate integration of the exist-
ing management information specifications in MOF, GDMO, SMI formats using
management facets written in OWL for ontology-based management systems.
The mapping proposition for describing data restriction and cardinality, docu-
mentation, versioning, object distinction, model reference, element redefinition
and access is described. The paper presents interesting approach, however the
translation software – announced as a plug-in for loading CIM Schemas repre-
sented in MOF to Protege – is not available. It is survey of mapping possibilities
for various resource meta-description formats. In [6] is presented the idea of
developing the semantic descriptions of the web services based on the CIM spec-
ifications. The example of the OWL-S [7] service definition is constructed using
the CIM XML format specification for service data and methods. The CIM se-
mantic descriptions are transformed to OWL. The paper is not focused on CIM
mapping issues. The CIM to OWL translation is done for basic constructs and in
the limited scope, intending to be rather a proof of concepts. In [8] the mapping
of CIM UML notation to RDF/S, and the extension for OWL, are presented.
The paper contains first the mapping for the basic syntax constructs to RDF/S
and then a supplement for OWL. While the mapping for RDF is elaborated in
detail, the OWL part is rather a set of mapping propositions, not formalized or
comprehensive. (e.g. the idea of using owl:allValuesFrom and owl:inverseOf for
associations, owl:TransitiveProperty for inheritance in not clear). It is important
and stressed in the paper that the lack of the entire semantic correspondence
between CIM, UML and OWL obstruct full and unambiguous mapping. The
loss of the expressivity of mapping is caused by two factors, i.e. using the UML
representation of CIM and UML to OWL translation process. The presented
above in our paper mapping from MOF to OWL allows protecting more CIM

(a) CIMOM browser (b) Protege OWL browser

Fig. 1: ManagedElement hierarchy.

model original semantics. The author of the [9] focuses on the troublesome
CIM to OWL translation issues. As a reason for difficulties of a translation
the author postulates among others the diverse character of the namespace or
a lack of the data container representation in the OWL. The author considers

possible solutions as only partly correct ones (e.g. for vector reprentation using
rdf:List constructs together with owl:allValuesFrom for element type restriction
or alternatively creation of multi-valued properties with the owl:maxCardinality
restriction, but without the control of the element sequence). In other place
the author rightly observes, the only possibility to express the default values
meaning in OWL seems to be annotating properties and for methods breakneck
becomes thinking of the name’s overloading and method inheritance rules. The
author concludes pessimistically that OWL, in spite of being developed for the
semantic integration purpose, finds limited applicability outside the semantic
community. There is no information about the implementation of concrete tools
for translation and their availability. The currently available translation tool is
CIMTool [10], however with a poor documentation. It is dedicated to support
management and integration of semantic models of various power management
systems as well as the communication based on the semantic descriptions in
CIM/XML and OWL formats. The solution works on CIM/XML language for
representing power system models, which works with a subset of the RDF syntax
and an RDF schema, adapted for the EPRI CIM (the EPRI CIM in UML form
is maintained by IEC TC 57). The subset of RDF Syntax is designed to sim-
plify serializers and interpreters while retaining compatibility with existing RDF
tools. By the way, the CIM RDF schema is derived from the CIM Rose Model.
The limited scope of constructions used in the translation is the drawback of that
solution in our view. The CIMTool provides possibility to read and merge CIM
and local UML models in the XMI form, browse models and check inconsisten-
cies, generate equivalent OWL ontologies, create and edit message definitions
based on the ontology and use those to generate XML schemas for messages.
The common integrated CIM model allows communication between systems of
various backgrounds, e.g. by generating the messages according diverse formats.

3 Mapping Approach

Since detailed discussion of the full mapping from CIM to OWL is beyond
the scope of this paper, we present here an example of the mapping covering
some aspects of the problem. In Figure 1a we can see a subset (hierarchy of
CIM ManagedElement concept) of the CIM Schema in CIMOM browser and in
Figure 1b we can see the resulting CIM OWL ontology in the Protege ontology
editor.

As a first example, lets consider simple mapping of part of CIM Job class
to OWL as shown in Table 1. To comment this example let us mention the
mapping of a qualifier Description and data types. The Description qualifier is
dedicated for the documentation, conveying semantic information to the user
in the natural language form. The best suitable mapping for this qualifier is
rdfs:comment. Then, between datatypes in MOF and OWL the equivalents
could be find nearly for all types. The exception is the datatime MOF type,
because both languages have different internal representation of date and time.
In this case, the transformation of the format has to be done by the mapping

// CIM_Job
[Description ("A Job is a LogicalElement that ...")]
class CIM_Job : CIM_LogicalElement {

[Description ("A free-form string that ...")]
string JobStatus;
//...

};

<!-- CIM_Job -->
<owl:Class rdf:about="#CIM_Job">

<rdfs:subClassOf rdf:resource="#CIM_LogicalElement"/>
<rdfs:comment>A Job is a LogicalElement ...</rdf:comment>

</owl:Class>
<owl:DatatypeProperty rdf:ID="CIM_Job__JobStatus">

<rdfs:domain rdf:resource="#CIM_Job" />
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:comment>A free-form string that ...</rdf:comment>

</owl:DatatypeProperty>

Tab. 1: An example of a simple class definition.

tool. This rule applies also some other mapping cases discussed later.

Now lets consider in more detail translation of CIM Job concept. In Table
2 we see the original CIM definition (top-left corner) and the resulting OWL
ontology definition (bottom). In the top-right corner we see a subset of CIM
meta OWL ontology. The usage of the cim-meta ontology allows mapping of
the MOF constructs, which are difficult to express with the help of means of-
fered by the OWL language in precise way. Elements modeled in the meta
ontology are referred in the target ontology using e.g. annotations (e.g. de-
fault value, qualifiers Version, Abstract) or inheritance (e.g. CIM Association,
CIM Association Ref). The benefits are important, the usage of meta ontology
allows elements categorization or reasoning. The lack of the fully equivalent con-
structions or rules for expressing some MOF constructs in OWL causes that the
partial, simplified mappings have to be admitted. These unambiguous mappings
concern mainly data restriction (e.g. qualifier Value, ValueMaps), distinction
(e.g. qualifier Key, Propagated, Weak), redefinition (e.g. qualifier Override),
access (e.g. qualifier Read, Write), versioning (qualifier Version), default values,
abstracting (qualifier Abstract), and dynamics (e.g. procedures, qualifier IN,
OUT). Unfortunately, many issues of the not fully semantically equivalent part
schema mapping are out of the scope of this paper. To achieve optimal mappings
a few approaches were used:

• the usage of various semantic constructs with an approximate and uncon-
tradictory meaning (e.g. for qualifier Override),

• the development of the additional meta ontology for a definition of missing
CIM vocabulary called cim-meta (e.g. for qualifiers Abstract, ValueMap,
Values, default values),

• the usage of comments and annotation properties (e.g. for qualifier Units).
The Table 2 shows also the mapping of some popular MOF constructs with

the help of mentioned approaches. These are qualifiers Abstract, Version, Write,
default value, qualifiers ValueMap, Values, Units.

[Abstract, Version ("2.10.0")]
class CIM_Job : CIM_LogicalElement {

[Write]
uint32 JobRunTimes = 1;
[ValueMap { "1", "2" },
Values { "Local Time", "UTC Time" }]
uint16 LocalOrUtcTime;
[Units ("Percent")]
uint16 PercentComplete;

//
};

// cim-meta ontology
<owl:Class rdf:ID="CIM_Value"/>
<owl:DatatypeProperty rdf:ID="value">

<rdfs:domain rdf:resource="#CIM_Value"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="valueMap">

<rdfs:domain rdf:resource="#CIM_Value"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
<owl:AnnotationProperty rdf:ID="defaultValue"/>
<owl:AnnotationProperty rdf:ID="cimVersion"/>
<owl:AnnotationProperty rdf:ID="isAbstract"/>

<owl:Class rdf:ID="CIM_Job">
<cim-meta:cimVersion>2.10.0</cim-meta:cimVersion>
<cim-meta:isAbstract>true</cim-meta:isAbstract>
<rdfs:subClassOf>

<owl:Restriction>
<owl:allValuesFrom>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">

<cim-meta:CIM_Value rdf:ID="CIM_Job__LocalOrUtcTime_LocalTime ">
<cim-meta:value>Local Time</cim-meta:value>
<cim-meta:valueMap>1</cim-meta:valueMap>

</cim-meta:CIM_Value>
<cim-meta:CIM_Value rdf:ID="CIM_Job__LocalOrUtcTime_UCTTime ">

<cim-meta:value>UCT Time</cim-meta:value>
<cim-meta:valueMap>2</cim-meta:valueMap>

</cim-meta:CIM_Value>
</owl:oneOf>

</owl:Class>
</owl:allValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="CIM_Job__LocalOrUtcTime"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="CIM_Job__JobRunTimes">
<rdfs:domain rdf:resource="#CIM_Job" />
<rdfs:range rdf:resource="&xsd;unsignedShort"/>
<cim-meta:Writeable/>
<cim-meta:defaultValue>1</cim-meta:defaultValue>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="CIM_Job__LocalOrUtcTime">
<rdfs:domain rdf:resource="#CIM_Job" />
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="CIM_Job__ PercentComplete">
<rdfs:domain rdf:resource="#CIM_Job" />
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>
<rdfs:comment>Units ("Percent")</rdfs:comment>

</owl:DatatypeProperty>

Tab. 2: An example of a simple class definition.

Our CIM2OWL tool allows conversion of Common Information Model schema
and individual to OWL. The CIM2OWL tool converts CIM schema, i.e. gene-

rate OWL ontologies from CIM schema and convert CIM instances, i.e. convert
proprietary CIM instances to OWL individuals. The conversion is based on the
WBEM Services API [11] and Jena Semantic Framework [12] and uses their
internal model representations and verification capabilities.

4 Conclusions and Future Work

As a result they were created: the OWL resource ontology, the mapping schema
and the CIM2OWL tool, which advantage is the ability to translate not only
CIM schema (i.e. CIM Core and Common Models) but also CIM instances
(i.e. CIM Extensions). The large scope of the expressiveness and functionality
was transformed from CIM to OWL. It was possible to achieve good functional
value ontology with minor expressiveness loss. The ontology strength is based
on the recognized and constantly developed standard. The further changes,
like minor modification or extensions in the mapping, are relatively easy to
apply. The ontology and the CIM2OWL tool can be found on the Grid Orga-
nizational Memory [13, 14, 15] website: [16]. Current version of the ontology
http://gom.kwfgrid.net/ontology/cim/2006/10/02/Flat contains 651 con-
cepts, 3626 properties and 4365 individuals.

The future work will include further evaluation of the resulting ontologies,
resolving of remaining mapping issues and further development of the CIM2OWL
tool.

Acknowledgements. This reasearch has been done in the framework of EU
IST-2004-511385 K-Wf Grid project. The authors would like to thank the whole
project consortium for remarks and feedback during the development process.
AGH University of Science and Technology grant is also acknowledged.

References

1. K-Wf Grid project website, http://www.kwfgrid.net/
2. DMTF, Common Information Model (CIM) Standards, http://www.dmtf.org/

standards/cim/

3. W3C, Web Ontology Language (OWL), http://www.w3.org/2004/OWL/
4. DMTF, Managed Object Format (MOF), http://www.dmtf.org/education/

mof/

5. Lopez de Vergare, J.E., Villagra, V.A., Asensio, J.I., Berrocal, J.; Application
of the Web Ontology Language to define management information specifications.
Proc. of the HP Openview University Association Workshop, France, 2004.

6. Keeney, J., Carey, K., Lewis, D., O’Sullivan, D., Wade, V.; Ontology-based Se-
mantics for Composable Autonomic Elements. Workshop of AI in Autonomic
Communications at the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, UK, 2005.

7. OWL-S website, http://www.daml.org/services/owl-s/1.0/
8. Quirolgico, S., Assis, P., Westerinen, A., Baskey, M., Stokes, E.; Toward a For-

mal Common Information Model Ontology. Proc. of Workshop on Intelligent Net-

worked and Mobile Systems, WISE04, Australia, 2004, Springer, LNCS vol.3307,
pp. 11-21.

9. Heimbigner, D.; DMTFCIM to OWL: A Case Study in Ontology Conversion.
Proc. of the Conference on Software Engineering and Knowledge Engineering
(SEKE2004), Canada, 2004, ISBN 1-891706-14-4, pp. 470-474.

10. CIMTool project website, http://cimtool.org/
11. WBEM Services project webpage, http://wbemservices.sourceforge.net/
12. Jena Semantic Framework website, http://jena.sourceforge.net/
13. Kryza, B., Pieczykolan, J., Babik, M., Majewska, M., Slota, R., Hluchy, L. and

Kitowski, J.; Managing Semantic Metadata in K-Wf Grid with Grid Organiza-
tional Memory. In: Bubak, M., Turala, M., Wiatr, K. (editors), Proceedings of
the 5th Cracow Grid Workshop (CGW05), Krakow, Poland, ACC-CYFRONET
UST, pp. 66-73.

14. Kryza, B., Slota, R., Majewska, M., Pieczykolan, J., Kitowski, J.; Grid Organi-
zational Memory – Provision of a High-Level Grid Abstraction Layer Supported
by Ontology Alignment. Future Generation Computer Systems Volume 23, Issue
3, March 2007, Pages 348-358, Elsevier.

15. Kryza B., Pieczykolan J., Kitowski J.; Grid Organizational Memory: A Versa-
tile Solution for Ontology Management in the Grid. In Proc. of 2nd Interna-
tional Conference on e-Science and Grid Computing, Dec. 4-6, 2006, Amsterdam,
Netherlands, (C) IEEE Computer Society Press. ISBN 0-7695-2734-5

16. Grid Organizational Memory website: http://gom.kwfgrid.net

Peer-to-Peer Distribution Model for Grid

Organizational Memory Knowledge Base

Bartosz Kryza1, Jan Pieczykolan1, Jakub Wach2, Miko laj Zuzek2,

and Jacek Kitowski1,2

1 Academic Computer Centre CYFRONET AGH, Krakow, Poland
2 Institute of Computer Science, AGH University of Science and Technology,

Krakow, Poland

Abstract

In this paper an architecture of distributing an ontological Grid knowl-
edge base over peer to peer network is presented. The discussion
is based on Grid Organizational Memory knowledge base developed
within the framework of K-Wf Grid EU-IST project. Authors discuss
several existing approaches to P2P such as structured and unstructured
and draw conclusions on which of these would be most applicable for
the problem of managing heterogenous and distributed resources in a
Grid environment.

1 Introduction

Latest trends in application of knowledge bases in distributed settings are being
oriented toward scalable and fault-tolerant solutions based on Peer-to-Peer com-
munication model. Currently, several semantic knowledge base solutions which
are based on the mentioned model exist. However they are either very generic,
with low performance and very basic functionality or are application specific
oriented, making them awkward to use as semantic metadata management so-
lutions for the Grid.

Grid Organizational Memory is a distributed knowledge base, developed
within the framework of EU-IST K-Wf Grid project [1], for managing semantic
metadata of Grid resources, such as hardware, data and software, as well as do-
main specific application information, using OWL-DL language as an ontology
formalism. It is based on a notion of ontology separation scheme [2], where a
global ontology is divided into interrelated ontology components, each managed
by separate and possibly distributed GOM Engine element. A single ontology
component is bound to a unique URI, and can be rendered and published as
an OWL document. Each GOM Engine [3] can be configured in different way,
providing various capabilities for ontology storage and reasoning. Currently,
GOM contains rather simple distribution model, assuming that each ontology
component is treated as one whole and should be managed by a single GOM
Engine element. In order to extend its functionality for very large metadata
sets, authors propose a P2P model for distributing an ontology component into
a network of peers that will together provide a scalable semantic metadata store
for some part of the metadata, for example data registry.

Due to the nature of the Grid, the authors discuss that the unstructured
model of a P2P network is more natural for such environment, since it keeps
metadata close to the described resources. Also, the ontology separation scheme
imposes grouping of peers by super-peer nodes, which manage the particular
ontology component. This model assures natural clustering of metadata into
consistent sets of ontological individuals, since metadata is stored ’locally’ with
respect to annotated resources. Unstructured P2P network model imposes less
burden on administrators and users in terms of depoying new instances of on-
tology components. However, use of the mentioned model have some serious
drawbacks, the most important is a high cost of query answering due to the
need of flooding the network in order to retrieve all potential answers. This
paper discusses possible solutions for that problem including distributed indexes
such as DHT and subscription mechanism which should substantially decrease
the network traffic necessary for answering most query patterns. Another is-
sue discussed in the paper is the semantic reasoning over distributed ontologies.
Although the assumption is that local models will be consistent, thus some rea-
soning over each local model will be possible, not always all possible entailments
will be inferred in this way. The applicability of several possible approaches
to this problem is analysed. Since the proposed P2P model must also support
the internal Grid Organizational Memory event system, which is used to update
the semantic metadata on fine grained level (e.g. values of relations), a section
is provided that shows how to extend that event system for a P2P network of
nodes, assuring consistency of information.

2 Peer to Peer Knowledge Management in the Grid

Peer to peer networks have been given much attention in the research commu-
nities in the past years. This resulted in several models and theoretical results,
some of them could be particularly appropriate to the problem of metadata dis-
tribution and resource management in distributed environments. In [4] authors
examine using of the super-peer model in a multi-organizational Grid. The model
is applied to membership management and resource discovery. What’s more, a
simulation analysis evaluates the performance of proposed model in discovering
resources. From P2P-researcher point of view, paper is interesting because of
the novelty – super-peer model, which aims at deploying a P2P information ser-
vice in Grids. hierarchical P2P systems are discussed in [5]. Authors closely
consider the specific case of two-tier hierarchy, in which peers are organized into
groups with autonomous intra-group overlay and lookup. Groups are organized
in a top-level tier with own overlay network. They also evaluate proposed model
using Chord for top-level tier and shows that it could significantly reduce the
expected number of hops in Chord, boosting system’s performance. In [6] au-
thors concentrate on using the de Bruijn routing in DHTs. Specifically, they
prove that it fails to meet conflicting objectives of storage load balancing as well
as search efficiency, when applied to systems with uneven key distribution. In
[7], authors describes adaptive and bandwidth-efficient solution of the problem

of sharing structured data in an unstructured P2P system. Their method al-
lows high quality answers to be obtained by using efficient query routing and
clustering of peers. Results of simulations are also presented, which show that
presented solution is very good performer in terms of bandwidth-efficiency and
effectiveness in a variety of workloads and networks. Authors of [8] explore
various alternatives to standard flooding query algorithm, as found in Gnutella
system. As a result an algorithm is proposed, that is based on multiple random
walks. Author shows, that while being as quick in resolving queries as Gnutella’s
algorithm, in many cases it reduces the network traffic by two orders of magni-
tude. What’s more, Authors also find that uniform random graphs is the best
network topology performance-wise. In [9] authors perform a very detailed com-
parison study on structured and unstructured P2P overlay networks. In contrary
to prevalent opinions Authors prove, that structured overlays could achieve low
maintenance overhead and exploit heterogeneity effectively. Further research is
carried on using techniques from unstructured networks, as floods and random
walks in structured overlays. Exploiting structural constrains, these techniques
allows to support complex queries with even better performance than unstruc-
tured overlays.

Apart general P2P research some investigations and attempts to develop P2P
based knowledge bases has been performed. In [10] semantic data retrieval from
knowledge base distributed over peer-to-peer network is considered. After study
of example scenario from tourism domain set of requirements is defined and peer
architecture is proposed. Semantic Web and P2P (SWAP) metadata model is
presented in [11]. Since no shared understanding of the domain can be assumed
authors propose methods for building views over the knowledge repository of
a peer and rating their content. SeRQL language is described and used to de-
fine views. It allows referencing the results with views serialized in the queries.
In the end issues connected with view visualisation are discussed. Authors of
[12] present scalable grid ontology repository system named OntStore that pro-
vides self-organizing and content addressable network. Efficiency of distributed
resource description storing and quering is improved by distributed hash table
(DHT) based on Pastry architecture. In [13] ontology-based approach to the data
interoperability problem in a heterogeneous P2P network is presented. Giving
illustrative examples authors discuss the issue of query processing and propose
query rewriting algorithm which takes into account integrity constraints of local
data. Simple mapping language PML is defined and used to specify ontology
mappings. Another scalable peer-to-peer RDF repository named RDFPeers is
described in [14] authors describe. Peers organize themselves into multiattribute
addressable network (MAAN) that is built over Chord overlay. Using MAAN as
the underlying network layer RDFPeers extends it with RDF-specific storage, re-
trieval, subscription and load-balancing techniques. Presented framework allows
multi-attribute and range RDQL queries to be routed efficiently to nodes that
store matching triples, altough not all query types are supported. Hierarchical
Knowledge Editor named Shared-HiKE is presented as an example of applica-
tion for which the distributed RDF repository is well suited for. Theoretical

approach to distributed knowledge bases can be found in [15]. Authors precisely
define general framework for P2P network systems, general querying algorithm
adequate for incremental search and related concepts. Algebraic models and
modal logic are exploited to derive theorems which make theoretical founda-
tions of P2P systems design. Getting certain answers from peers with partial
information in knowledge systems with integrity constraints is the problem to
which the solutions are proposed. In [16] authors present unstructured peer-to-
peer architecture called KEEx which store knowledge in document repositories
and describes resources in contexts maintained by context repositories. Peers
are organized in groups called K-federations to reflect their content relations and
social structures. Query resolution involves lexical search and semantic resolu-
tion based on context matching algorithm. Detailed description of peer-to-peer
platform called IMAGINE (Integrated Multidisciplinary Autonomous Global In-
novation Networking Environment) is presented in [17]. Above object layer man-
aged by Chord DHT overlay semantic layer is built to support complex queries
such as wildcard queries and range queries on key strings. Tree-like structured
index is used to achieve platform scalability and provide efficient query process-
ing. To increase services quality plaftorm design includes sophisticated features
like decentralized load-balancing and semantic overlay replication. Authors of
[18] propose peer-to-peer architecture that supports ontology-driven resource
discovery in distributed knowledge base. Detailed description of algorithm for
distributed resource matching is given. System utilizes RACER, an interface to
OWL language, as its deductive component.

3 Vision of the Proposed Solution

The first major assumption is to keep the peer-to-peer overlay unstructured,
which means the resource descriptions should be kept close to the actual re-
sources. The user should also have the possibility to freely choose the GOM
Engine to which resource description is submited. This will allow descriptions
to be stored locally to the publisher in arbitrary sense (e.g. physical proximity,
organizational proximity). Descriptions should be available to all users, possibly
according to some authorization constraints. This assumption should enforce
clustering of the triples in a way that will enable reasoning in local engines.
While specifying the query user should be able to favor local matches. Many
definitions of locality can be introduced. Some of them may be based on net-
work radius (e.g. in terms of network hops) while others may utilize semantical
similarity of explored resources. To constrain network flooding and improve
searching performance queries should be optimized by maintaining a DHT in-
dex of resources stored in the network. Well designed indexing should be able
to significantly decrease the number of peers targeted by the queryies

The system will be oriented on distributing the instance registries – not the
domain ontologies (schemas), because the registries in Grid applications tend
to grow much faster then schemas of the ontologies. Peers will be organized in
groups, where each group will be bound to a domain ontology and identified by

it’s name (e.g. DataRegistry for Coordinated Traffic Management VO). Peers in
a group together provide the required functionality which is answering queries,
modification of resources and reasoning.

With respect to GOM as a distributed knowledge base, the most important
use case is when an actor adds a resource description, written in OWL language.
Architecture of GOM P2P overlay assumes that this submission is complete. It
means that a description of a resource, which is a set of named, and possibly
anonymous OWL individuals stored in one GOM Engine instance (P2P node)
is clustered. This constraint enables GOM P2P to merge results of queries,
performed on each node, in simple and elegant way. Modified scenario for this
use case enables an actor to reuse existing named OWL individuals from other
registries. This could be applicable in cooperation with replication of the data,
e.g. when a replica of a file has been created in the local file system, the metadata
instance about this file could also be replicated. Of course this is considered as an
option in GOM-P2P, because synchronization issues might be very difficult. The
next basic functionality of GOM-P2P knowledge base is removing of individuals.
This scenario assumes that information being removed is a set of individuals that
comprise some resource description. Modification of already stored metadata
will also be supported by our system. This can include modification of data
or object property of an OWL individual, which is a part of some resource’s
description. In all described above use cases an GOM Engine is modified. It
changes the knowledge it contains, so new reasoning should be performed on it
before answering a query. This will assure that the answer will be consistent.
Firstly query is executed on a local GOM Engine. After obtaining local results,
selected node propagates the query to other peers in order to find the RDF triples
that match this query. Most probably propagation will be optimized by using the
DHT index. The resulting information – RDF triples that match specified query
– are merged by the node that initiated whole process. After merging, complete
information is returned to the client that queried GOM-P2P. In GOM P2P,
resolution for those questions combines with it’s role as a knowledge base. In
particular, when a GOM Engine is being deployed, it will connect to the existing
group of nodes comprising of particular registry, for example data registry of
CTM domain. In the second case, when GOM Engine in being stopped, it will
try to notify it’s peer group that it will not be able to provide further service.
The first problem is dealing with the indexes in the DHT, that refer to the node
being removed. Obvious solution is to remove them in some way. The second
issue is what to do, if other nodes refer to some individuals, that are described
in the node being detached. Those are questions, that remain to be answered
after further research.

DataRegistry/CTM:0001

DataRegistry/CTM:0002

DataRegistry/CTM:0003

DHT overlay index over GOM

Engines comprising a DataRegistry

for CTM domain

...

(<> <> <#NET>) --- DataRegistry/CTM:0003

(<> <dg:contains> <>) --- DataRegistry/CTM:0003

(<ds:WeatherBoundaryConditionsData> <> <>) --- DataRegistry/CTM:0001

...

Group ID = DataRegistry/CTM

<dg:RemoteFile rdf:ID="genoa_wbc_file2">

<dg:hasURI rdf:resource="http://grid03.softeco.it/kwfgrid/

Ctm/data/wbc/genoa.wbc"/>

</dg:RemoteFile>

<dg:DataObject rdf:ID="genoa_wbc2">

<dg:contains rdf:resource=" "/>

<dg:isStoredIn rdf:resource="#genoa_wbc_file2"/>

<dg:hasFormat rdf:resource="&ds;#WBC"/>

</dg:DataObject>

#genoa_wbc_data

<dg:RemoteFile rdf:ID="genoa_wbc_file">

<dg:hasURI rdf:resource="http://grid02.softeco.it/kwfgrid

Ctm/data/wbc/genoa.wbc"/>

</dg:RemoteFile>

<dg:DataObject rdf:ID="genoa_wbc">

<dg:contains rdf:resource="#genoa_wbc_data"/>

<dg:isStoredIn rdf:resource="#genoa_wbc_file"/>

<dg:hasFormat rdf:resource="&ds;#WBC"/>

</dg:DataObject>

<ds:WeatherBoundaryConditionsData rdf:ID="genoa_wbc_data">

<ds:ofCity rdf:resource="&ar;#Genoa"/>

</ds:WeatherBoundaryConditionsData>

<dg:RemoteFile rdf:ID="genoa_net_file">

<dg:hasURI rdf:resource="http://grid02.softeco.it/kwfgrid

Ctm/data/net/genoa.net"/>

</dg:RemoteFile>

<ds:UrbanRoadNetworkMap rdf:ID="genoa_net_data">

<ds:ofCity rdf:resource="&ar;#Genoa"/>

</ds:UrbanRoadNetworkMap>

<dg:DataObject rdf:ID="genoa_net">

<dg:contains rdf:resource="#genoa_net_data"/>

<dg:isStoredIn rdf:resource="#genoa_net_file"/>

<dg:hasFormat rdf:resource="&ds;#NET"/>

</dg:DataObject>

/

Fig. 1: Proposed architecture of Grid Organizational Memory Peer to Peer over-
lay.

4 Integration with Grid Organizational Memory Knowled-

ge Base

Our GOM-P2P architecture is essentialy unstructured due to the nature of Grid
resoure descriptions which should belong with the resources. Peer-to-peer infras-
tructure will be connected with GOM Engines by specific adapter component.
Adapter will provide a bridge between GOM Engines and query resolver. This
part of P2P infrastructure is responsible for analysing the incoming query, and
possibly translating it into a set of basic RDF queries, and optimizing them in
order to query minimal possible number of nodes. For instance, if the query is
about a particular resource, than it can be simply resolved against DHT index
which GOM Engines contain or could contain such information. However some
queries won’t be that simple, for instance range queries, when the actual value of

the ID is not know. The query resolution module is also responsible for merging
the query results from the peers that hold the information about the resource
queried and to perform a join operation on the obtained information. It can
be interesting to analyse the queries that could be partitioned and passed along
the answer path, that means the part of the query that should be resolved first
is passed according to the DHT to the next node, and that node resolves what
it can, and passes the remaining query further. The last node can for instance
return the answer to the first node. It is important to notice, that DHT nodes
will not hold local triples, but the ones from the global space that are associ-
ated with it’s index through some hashing function. The DHT thus provides a
mapping between resource ID from RDF model of the registry and the ID of the
GOM Engine which contains some information on that resource. The motiva-
tion for distribution of the index itself lies in the fact that its global size can be
rather big. In GOM-P2P architecture, that is currently developed, the model
can be stored in memory or in database, and can have a reasoner attached to
it. The reasoner can work on local model only. In the future evalution some
more advanced techniques as distributed reasoning could be tested (e.g. using
e-connections from Pellet).

5 Conclusions and Future Work

The paper presented an early work vision and architecture of a distributed knowl-
edge base for the Grid. The vision involves an already working knowledge base
component called Grid Organizational Memory developed within K-Wf Grid
project, which due to its architecture can be relatively easily integrated with a
Peer to Peer overaly network and thus made more distributed and scalable. The
future work will include careful design and implementation of the system using
most appropriate solution available in the area of P2P.

Acknowledgements. This reasearch has been done in the framework of EU IST-
2004-511385 K-Wf Grid project. AGH University of Science and Technology
grant is also acknowledged.

References

1. K-Wf Grid project homepage, http://www.kwfgrid.net.
2. Kryza, B., Majewska, M., Slota, R., and Kitowski, J., Unifying grid metadata

representations through ontologies, In Wyrzykowski, R., Dongarra, J., Meyer,
N., and Wasniewski, J. (Eds), PPAM, Lecture Notes in Computer Science, vol.
3911, pp. 683–690, Springer, 2005.

3. Kryza, B., Pieczykolan, J., and Kitowski, J., Grid organizational memory: A ver-
satile solution for ontology management in the grid, In 2nd International Confer-

ence on e-Science and Grid Computing, Dec. 4-6, 2006, Amsterdam, Netherlands,

(C) IEEE Computer Society Press, In print.
4. Mastroianni, C., Talia, D., and Verta, O., A super-peer model for building re-

source discovery services in grids: Design and simulation analysis., In Sloot et al.

[19], pp. 132–143.
5. Garcs-Erice, L., Biersack, E.W., Ross, K.W., Felber, P., and Urvoy-Keller, G., Hi-

erarchical peer-to-peer systems, Parallel Processing Letters, 13(4):643-657, 2003.
6. Datta, A., Girdzijauskas, S., and Aberer, K., On de bruijn routing in distributed

hash tables: There and back again., In Peer-to-Peer Computing [20], pp. 159–166.
7. Kantere, V., Tsoumakos, D., and Roussopoulos, N., Querying structured data in

an unstructured p2p system, In WIDM ’04: Proceedings of the 6th annual ACM

international workshop on Web information and data management, pp. 64–71,
New York, NY, USA, 2004, ACM Press.

8. Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S., Search and replication in
unstructured peer-to-peer networks, In ICS ’02: Proceedings of the 16th inter-

national conference on Supercomputing, pp. 84–95, New York, NY, USA, 2002,
ACM Press.

9. M. Castro, M.C. and Rowstron, A., Debunking some myths about structured
and unstructured overlays, In Proc. of NSDI’05, Boston, MA, USA, May 2005.

10. Ding, H., Sølvberg, I., and Lin, Y., A vision on semantic retrieval in p2p network.,
In AINA (1) [21], pp. 177–182.

11. and, J. B., A metadata model for semantics-based peer-to-peer systems, In
et al., K.A. (Ed.), Semantics in Peer-to-Peer and Grid Computing – SemPGRID,

collocated with the 2003 WWW Conference, Budapest, 2003.
12. Babik, M. and Hluchy, L., Towards a scalable grid ontology repository, In Bubak,

M., Turala, M., and Wiatr, K. (Eds), Proc. of 4th Cracow Grid Workshop, pp.
101–108, Cracow, Poland, December 2004, ACK Cyfronet-AGH.

13. Xiao, H. and Cruz, I.F., Ontology-based query rewriting in peer-to-peer networks,
In In Proc. of the 2nd Int. Conf. on Knowledge Engineering and Decision Support,
pp. 11–18, 2006, TO READ.

14. Cai, M., Frank, M.R., Yan, B., and MacGregor, R.M., A subscribable peer-
to-peer rdf repository for distributed metadata management., J. Web Sem.,
2(2):109–130, 2004.

15. Majkic, Z., Weakly-coupled ontology integration of p2p database systems., In
Zaihrayeu and Bonifacio [22].

16. Bonifacio, M., Bouquet, P., Busetta, P., Danieli, A., Don‘a, A., Mameli, G., and
Nori, M., Keex: A peer-to-peer solution for distributed knowledge management.,
In Zaihrayeu and Bonifacio [22].

17. Zhuge, H., Sun, X., Liu, J., Yao, E., and Chen, X., A scalable p2p platform for
the knowledge grid., IEEE Trans. Knowl. Data Eng., 17(12):1721–1736, 2005.

18. Heine, F., Hovestadt, M., and Kao, O., Towards ontology-driven p2p grid resource
discovery., In Buyya [23], pp. 76–83.

19. Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., and Bubak, M. (Eds),
Lecture Notes in Computer Science, vol. 3470, Springer, 2005.

20. 4th International Conference on Peer-to-Peer Computing (P2P 2004), 15-17 Au-

gust 2004, Zurich, Switzerland, IEEE Computer Society, 2004.
21. IEEE Computer Society, 2004.
22. Zaihrayeu, I. and Bonifacio, M. (Eds), Proceedings of the MobiQuitous’04 Work-

shop on Peer-to-Peer Knowledge Management (P2PKM 2004), Boston, MA,

USA, Aug 22, 2004., CEUR Workshop Proceedings, vol. 108, CEUR-WS.org,
2004.

23. Buyya, R. (Ed.), 5th International Workshop on Grid Computing (GRID 2004),

8 November 2004, Pittsburgh, PA, USA, Proceedings, IEEE Computer Society,
2004.

TeToN – a Jena-Based Tool
for Text-to-Ontology Approach

Marcin Kuta1, Stanis law Polak1, Barbara Palacz1, Tomasz Mi loś1,

Renata S lota1, and Jacek Kitowski1,2

1 Institute of Computer Science, AGH,
al. Mickiewicza 30, 30-059, Kraków, Poland

2 Academic Computer Centre CYFRONET AGH,
ul. Nawojki 11, 30-950 Kraków, Poland

emails: {mkuta, polak, rena, kito}@agh.edu.pl

Abstract

The article presents Text to oNtology (TeToN) tool created to deal with
a problem of knowledge acquisition from natural language short text
notes.
This kind of knowledge is used for extension of existing knowledge base
which is used for coordinating workflow execution in grid environment.
The short text notes provide additional feedback from the user, which
does not have to understand grid internals. This feedback may be
helpful for improvement of grid operations.
Knowledge provided by user feedback (in form of short user notes)
is extracted by means of natural language analysis tools. Then it is
integrated with background knowledge (stored in ontologies) according
to our statistical measure.

1 Introduction

Current development of grid environments and grid computing are focused on ex-
tensive use of knowledge for efficient exploitation of both hardware and software
grid resources, with ontological formalism for knowledge representation applied
typically. Good examples in this field are EU IST projects, like OntoGrid [19],
Inteligrid [10] and K-WfGrid [13]. In the last mentioned project the applica-
tion workflows are composed dynamically with services selected automatically
according to a user request. The workflows are subject of opinion of users. One
way of expressing the evaluation score given to the user is to use notes in natural
language, which later on can be presented as a tip to another one being in the
same context of work.

In this paper we present a spin-off of the research performed within K-Wf
Grid, which consists of making knowledge of the tips more useful formally. For
this purpose we propose to study creation and extension of existing ontologies
by understanding natural language sentences. Since input sentences provide ad-
ditional feedback from the user, it may be helpful for improvement of operations
like workflow composition.

The TeToN (Text To oNtology) tool is intended to acquire new knowledge by
analysing only short pieces of information in form of sentences in English, in the

future devoted to the problems addressed by projects like K-WfGrid, making
use of their existing system knowledge.

The rest of the paper is organized as follows. Section 2 presents state of the
art in the field of learning ontologies from text. Section 3 introduces architecture
of the TeToN system and presents process of knowledge acquisition. A suitable
example of ontology extension is supplied in Section 4. The last section concludes
the paper.

2 State of the Art

The studies on natural language text processing to ontology focus on methods
that require large text corpora [14, 16] and extract dependencies by means of reg-
ular expressions [7, 9], association rules [17], conceptual clustering [5], ontology
pruning [12] or concept learning [8].

Regular expressions method relies on remark that relations can be identified
by fixed patterns, e.g. pattern “such NP as {NP,}∗ {(or | and)} NP” indicates
generalization. Extracted dependencies are lexical relations like generalization
[9] or meronymy [2].

Association rules method help to discover non-taxonomic relation between
concepts. Using a concept hierarchy as a background knowledge, new relations
are created basing on statistics of co-occurrences of terms in texts.

In conceptual clustering method concepts taken from input are grouped ac-
cording to the semantic distance between them. Two concepts are considered to
belong to the same group if their semantic distance is below predefined threshold.

Ontology pruning method uses core ontology (e.g. Wordnet) and corpus
of text. New concepts are identified over text using natural language analysis
tools. The resulting ontology is then pruned, basing on a statistical methods.
This method is leveraged by Text2Onto from KAON tool suite [3].

Concept learning method, developed by Maedche, uses techniques already
mentioned (pattern based extraction, conceptual clustering, etc.). Due to them
new concepts are extracted and existing ontology is incrementally updated.

Due to few amount of input data the above methods are not directly relevant
for short text notes processing. We propose our original approach, originating
from regular expressions technique combined with ontology pruning method for
amelioration of results.

3 TeToN Architecture

Understanding language means knowing what concepts a word or phrase stands
for and knowing relations to link those concepts together in a meaningful way.

In order to perform this task in TeToN an input sentence is converted to
ontology elements. If the sentence contain some new facts, these ontology el-
ements can then be integrated with existing knowledge base. To achieve this
several transformations are performed: syntactic and semantic analysis, concept

Extended Knowledge BaseExtended Knowledge Base

text note

WordNet

TeToN
analysis module

Knowledge BaseKnowledge Base

Dictionary
of relations

Pieces of ontology

TeToN
ontology extension

module

Matched concepts

New concepts

New concepts

New relations

Fig. 1: General architecture of TeToN.

matching, relation matching and knowledge evolution, which are described below
in detail.

Figure 1 presents general architecture of TeToN. The TeToN analysis module
converts text notes to pieces of ontology. Some of these pieces are matched with
concepts and relations in the Knowledge Base by an extension module. The rest
of pieces can be entered to Knowledge Base as new concepts and relations.

In the implementation the Jena library [11] was used to manipulate the
Knowledge Base stored in OWL [20].

3.1 Syntactic and Semantic Analysis

The result of syntactic analysis is a conversion of user note to a parse tree, whose
nodes are marked by part of speech (POS) tags in Penn TreeBank notation [22].
To perform this task statistical parser trained on English treebank [4] has been
used. Sentences in other languages can also be processed. In this case the user
has to provide however a suitable treebank in the desired language for parser
training process.

The main task of semantic analysis is word sense disambiguation. The sense
of each word from the input sentence is learned according to WordNet taxonomy
[6]. This task is done with help of the SenseRelate library [21] provided with
semantic relatedness measure. TeToN uses by default Lesk measure [1] provided
by WordNet Similarity Perl module [23] with the size of the context window set
to 3 (which means that only one preceding word and one succeeding word is
taken into consideration during the word disambiguation process). Additionally
words’ base forms from the WordNet’s lexical database are retrieved in order to
facilitate further processing.

The next step relays on the previously created parse tree structure. Each

Concept name WordNet keywords
ModernSupersonicAirplane modern#a#1, supersonic#a#1,

airplane#n#1, aeroplane#n#1, plane#n#1
... ...

Fig. 2: The exemplary line of index.

noun or adjective phrase from the parse tree has to result with a piece of on-
tology containing at least one concept (subject or object in RDF terminology),
while each verb phrase has to result with a piece that contains at least one re-
lation (property in RDF terminology). All potential concepts and relations are
identified in bottom-up manner. At each node of the parse tree a new piece of
ontology is constructed by merging the ontology pieces created in its descen-
dants.

3.2 Concept and Relation Matching and Knowledge Evolution

Having obtained pieces of ontology (i.e. candidates for concepts and relations),
we extend with them Knowledge Base. Because concepts can be represented by
different names there is a danger of entering redundancy to Knowledge Base.
To avoid it, we try to match concept names from the created pieces of ontology
with the concept names from Knowledge Base. Each concept from the created
pieces of ontology is assigned a measure, M , indicating the accuracy of the
match to concept from Knowledge Base (the higher measure the more accurate
the match). Knowledge Base is enriched with the new concept if M is below a
certain threshold. Otherwise we do not have to enter new name to Knowledge
Base.

To perform this, first an index from existing knowledge-base ontology is cre-
ated with help of Lucene library ([15]). The index associates concepts from this
ontology with synsets – lists of WordNet keywords:

The measure M is defined according to the following formula:

M = neWe + nsWs (1)

where:
ne – number of exactly matching Wordnet keywords (i.e. bolded keywords

in figure 2),
ns – number of synonymously matching Wordnet keywords (i.e keywords

selected in normal font in figure 2),
We – weight of an exact match,
Ws – weight of a synonymous match.

We and Ws are parameters, and should satisfy condition We ≥ Ws. Between
variables ne and ns inequality ne + ns ≤ min(nk, nt) holds, where:

nk – number of words in piece of ontology we try to match to a concept from

Relation name Pattern Target type Relation range
propertyOf be#v#1 Adjective phrase Feature
isA be#v#1 Noun phrase Vehicle
partOf include#v#1, Noun phrase -

contain#v#1,
comprise#v#1

Tab. 1: Dictionary of relations.

Knowledge Base,
nt – number of words matched concept name is build of.

We also have to indicate the threshold of acceptable matches. Each match
has to satisfy the following inequality in order to be accepted:

M > T ·min(nk, nt) ·We (2)

where:
T – threshold value,
min(nk, nt) ·We – maximum possible metric value for this match

Joining equations (1) and (2) we get the acceptance condition:

neWe + nsWs

min(nk, nt) ·We
> T (3)

Our assumptions guarantee that the left side of the formula will be in range [0, 1].
In the next stage proper relations for considered concepts (i.e. matched and

newly created) must be selected. In order to choose the proper relation for
considered concept one has to take into account the following data from input
sentence:

1. words from verb phrase (to have the idea what relation is about)
2. target type, i.e. type of phrase following verb phrase (to take into account

type of arguments relation can take)
Because creation of a good set of relations which would describe well modelled
reality and creation of good relation names are not trivial tasks, we suppose that
a special dictionary is already supplied (by the user or administrator). This dic-
tionary describes relations by theirs names, patterns, type of arguments they
can take, as shown below:

Ontology pieces created from verb phrases are compared with patterns from
dictionary. The target type is also considered and the appropriate relation name
is selected. If there are more matching relations in dictionary, all of the possibili-
ties are presented to the user for acceptation. Otherwise, if there is no matching
relation then a new relation name is created and proposed to the user. New
relation name is compound of all the significant words in a verb phrase.

Having selected concepts and matching relations the ontology extensions with
triples (subject, predicate, object) are proposed to user.

4 Example of Knowledge Acquisition

Let’s consider the following example. Suppose the below Knowledge Base is
given:

<owl:Class rdf:Id="Vehicle">
<owl:Class rdf:Id="Feature">
<Feature rdf:Id="Comfortable">
<owl:Class rdf:Id="Airplane">

<owl:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>
<owl:Class rdf:Id="ModernSupersonicAirplane">

<owl:subClassOf rdf:resource="#Airplane"/>
</owl:Class>
<owl:Class rdf:Id="Automobile">

<owl:subClassOf rdf:resource="#Vehicle"/>
<owl:Restriction>

<owl:onProperty>
<owl:Property rdf:about="#propertyOf"/>

</owl:onProperty>
<owl:hasValue rdf:resource="#Comfortable"/>

</owl:Restriction>
</owl:Class>
<owl:Property rdf:Id="propertyOf">

<owl:range rdf:resource="Feature"/>
</owl:Property>

and let’s consider the following sentence as a user note:

Racing cars and supersonic planes are very fast and quite expensive.

In the syntax analysis phase the following parse tree is created:
From the parse tree we obtain ontology pieces: (racing#n#1 car#n#1),

(supersonic#a#1 plane#n#1), (very#r#1 fast#a#1), (quite#r#1 expensive#a#1)
and (be#v#1). Assuming threshold value T = 0, 6 ontology piece
(supersonic#a#1 plane#n#1) is matched with concept ModernSupersonicAirplane,
thus is not entered to Knowledge Base. Using dictionary from figure 3 we find
that ontology piece (be#v#1) should be represented by relation partOf.
As an outcome the tool proposes new triples to extend the knowledge-base on-
tology with:

(propertyOf, RacingCar, VeryFast)
(propertyOf, RacingCar, QuiteExpensive)
(propertyOf, ModernSupersonicAirplane, VeryFast)
(propertyOf, ModernSupersonicAirplane, QuiteExpensive)

CC

and

ADJPAUX

VP

are

S

NP

NP

NN

racing

NNS

cars

CC

and

NP

JJ

supersonic

NNS

planes

ADJP

RB JJ

quite expensive

ADJP

RB JJ

very fast

POS tags
• S sentence
• NP noun phrase
• VP verb phrase
• ADJP adjective phrase
• AUX auxiliary verb
• NN noun (singular)
• NNS noun (plural)
• JJ adjective
• RB adverb
• CC coordinating conjunction

Fig. 3: Parse tree of exemplary input sentence.

5 Conclusions and Future Work

Acquiring knowledge from end user’s text notes we must be sure than we can
trust them completely. To make efficient use of theirs opinions it is suggested
to take account of opinions appearing sufficiently often. The other solution to
this problem would be to confer ontology evolution task to knowledge engineer
for final acceptance. It is also hard to propose good vocabulary (concepts or
relations may be represented by plethora of names). Due to these difficulties our
tool needs engineer assistance for final acceptance of knowledge evolution.

In future we plan to perform tests on Grid Organizational Memory of K-Wf
Grid and analyse relevance, consistency and usefulness of acquired knowledge.
We would like to improve process of syntactic and semantic analysis by identi-
fying phrasal verbs in aim to provide more accurate propositions of knowledge
extensions. Analysis of N -best parse tree, in case the most probable one is not
appropriate is also planned. We want to continue our research in order to relax
from user intervention and make ontology extension process fully automatic.

Acknowledgements. This research has been supported by Department of Com-
puter Science, AGH, University of Science and Technology, Cracow and partially
by European Commission Project IST-2004-511385 K-Wf Grid.

References

1. Banerjee, A., Pedersen, T., An Adapted Lesk Algorithm for Word Sense Disam-
biguation using WordNet, In the Proceedings of the Third International Con-
ference on Intelligent Text Processing and Computational Linguistics, February
17-23, 2002, Mexico City.

2. Berland, M., Charniak, E., Finding Parts in Very Large Corpora, In Proceedings
of the 37th Annual Meeting of the ACL, pp 57-64, 1999.

3. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle,
D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme,
G., Sure, Y., Tane, J., Volz, R., and Zacharias V., Kaon – towards a large scale

semantic web, In Bauknecht, K., Tjoa, A. M., and Quirchmayr, G. (Eds), Proc.
of E-Commerce and Web Technologies 3rd Intl. Conf., EC-Web 2002, Aix-en-
Provence, France, LNCS, vol. 2455, pp. 304-313, Springer, 2002.

4. Charniak, E., A Maximum-Entropy-Inspired Parser, Proceedings of North Amer-
ican Chapter of the Association for Computational Linguistics, 2000

5. Faure D., Poibeau T., First Experiments of using semantic knowledge learned by
ASIUM for information extraction task using INITEX, In: Staab S., Maedche A.,
Nedellec C., Wiemer-Hastings P. (eds.) Ontology Learning Workshop ECAI-2000,
pp 7-12.

6. Fellbaum, C., WordNet An Electronic Lexical Database, Computational Linguis-
tics, 25, 2 (1998), 292-296, http://wordnet.princeton.edu

7. Hahn U., Schnattinger K., Towards Text Knowledge Engineering, In
AAAI’98/IAAI’98 Proceedings of the 15th National Conference on Artificial In-
telligence and the 10th Conference on Innovative Applications of Artificial Intel-
ligence, 1998.

8. Hahn U., Schulz S., Towards Very Large Terminological Knowledge Bases: A
Case Stude from Medicine, Hamilton HJ. (ed.), Advances in Artificial Intelligence,
13th Biennial Conference of the Canadian Society for Computational Studies of
Intelligence (AI 2000), Montreal, Quebec, Canada. Lecture Notes in Computer
Science LNCS 1822, Springer-Verlag, Berlin, Germany, pp. 176-186.

9. Hearst, M.A., Automatic acquisition of hyponyms from large text corpora, In
Proceedings of the 14th International Conference on Computational Linguistics,
pp. 539-545, 1992.

10. Inteligrid website: http://www.inteligrid.com/

11. Jena - A Semantic Web Framework for Java, http://jena.sourceforge.net/
12. Kietz, J.U., Maedche A., Volz R., A Method for Semi-Automatic Ontology Acqui-

sition from a Corporate Intranet, In: Aussenac-Gilles, N., Biebow, B., Szulman,
S., (eds.), EKAW 2000 Workshop on Ontologies and Texts. Juan-Les-Pins, France.
CEUR Workshop Proceedings 51:4.1-4.14, Amsterdam, The Netherlands.

13. K-Wf Grid website: http://www.kwfgrid.eu/

14. Liu, W., Weichselbraun, A., Semi-Automatic Ontology Extension Using Spread-
ing Activation, Journal of Universal Knowledge Management, vol. 0, no. 1 (2005),
pp. 50-58.

15. Lucene text search engine, http://lucene.apache.org/
16. Maedche, A., Staab, S., Discovering Conceptual Relations from Text, In: W.Horn

(ed.): ECAI 2000. Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, August 21-25, 2000. IOS Press, Amsterdam, 2000.

17. Maedche, A., Staab, S., Mining Ontologies from Texts, In: R. Dieng, O. Corby
(eds.): EKAW 2000. 12th International Conference in Knowledge Engineering
and Knowledge Management, Juan-Les-Pins, France. Lecture Notes in Artificial
Inteligence LNAI 1937, Springer-Verlag, Berlin, Germany, pp. 189-202.

18. Michelizzi, J., Semantic Relatedness Applied to All Words Sense Disambigua-
tion, Master of Science Thesis, Department of Computer Science, University of
Minnesota, Duluth, July, 2005.

19. OntoGrid website: http://www.ontogrid.net/

20. OWL Web Ontology Language Overview, http://www.w3.org/TR/

owl-features/

21. SenseRelate library, http://senserelate.sourceforge.net
22. The Penn Treebank website: http://www.cis.upenn.edu/~treebank/home.html
23. WordNet Similarity library, http://sourceforge.net/projects/wn-similarity

OnTal – the Tool for Ontology Extension

in Knowledge-Based Grid Systems

Renata Slota1, Joanna Zieba1, Maciej Janusz1, and Jacek Kitowski1,2

1 Institute of Computer Science AGH-UST, Mickiewicza 30, 30-059 Krakow, Poland
2 Academic Computer Centre CYFRONET AGH,

Nawojki 11, 30-950 Krakow, Poland

Abstract

This paper presents an approach to knowledge evolution developed in
the K-WfGrid project and OnTal – the tool which implements it. The
tool is designed to support the process of Grid services’ semantic regis-
tration with help of ontology alignment methods applied to the problem
of local ontology schema extension. The paper describes OnTal’s func-
tionalities along with its theoretical background and implementation
details.

1 Introduction

Semantic grids are a field of intensive research nowadays. The goal of Semantic
Grid community is to enhance ’classical’ Grid with explicit, machine-processable
knowledge, thus enabling semantic interoperability and seamless cooperation in
dynamically created Virtual Organizations [1]. Several Grid projects pursue this
aim.

The business-oriented InteliGrid [2] is designed to provide a grid-based in-
teroperability infrastructure for industrial projects, which rely on cooperation of
multiple business partners. Another project, OntoGrid [3], focuses on establish-
ing a methodology for creating knowledge-enabled Grid systems and creating a
reference architecture of a Semantic Grid.

Finally, K-WfGrid project focuses on creation of a knowledge-based frame-
work which enables automated workflow applications’ composition, execution
and monitoring in Grid environment [4]. Knowledge is stored in Grid Organiza-
tion Memory (GOM), which is a distributed knowledge base containing multiple
general and domain specific ontologies, as well as individual registries, concern-
ing five main areas of functioning of a Grid system. Semantic descriptions of
Grid services, which are contained in GOM’s Service Registry, play an impor-
tant role in the functioning of the system because workflow composition relies on
automated analysis of services’ characteristics. Growth and evolution of knowl-
edge stored in Grid Organization Memory improves the possibilities of workflow
creation. Because of this, the K-WfGrid Project has developed various tools for
knowledge acquisition – among them the Knowledge Assimilation Agent (KAA),
which extracts semantic information from the history of previous workflow ex-
ecutions [5], and its part, OnTal – the tool for ontology extension presented in
this paper.

2 Tool’s Overview and Implementation

2.1 Overview

OnTal is a semi-automatic tool supporting the process of Grid services’ regis-
tration in K-WfGrid system. It can be used by Virtual Organizations, whose
members cooperate and share various resources, particularly services, which may
be assembled into workflow applications with the help of semantic technologies.
Consequently, all services in K-WfGrid system must be represented by their se-
mantic descriptions (using the OWL-S schema), stored in the Service Registry.
New service’s description, particularly if reused from outside of the K-WfGrid
users’ community, may refer to concepts from external ontologies. All such con-
cepts need to be included in Grid Organization Memory to enable workflow
construction which entails reasoning over the knowledge about services. On the
other hand, GOM knowledge base must stay consistent so eventual changes of
its ontologies should be limited and controlled.

This situation creates requirements for OnTal: the tool should identify con-
cepts from external ontologies in the OWL-S description and propose the way
in which they may be added to GOM. More specifically, a concept can be ei-
ther added to GOM together with its neighbourhood from the source ontology,
or mapped onto an existing GOM concept. Ontology similarity methods (de-
scribed in the following subsection) are used to determine how a certain concept
should be handled and generate mapping propositions which are then assessed
by the user. OnTal’s user is a VO member, with a basic understanding of on-
tologies, responsible for providing new services. To enforce control over semantic
resources, eventual changes should be also accepted by the GOM’s administrator
before introducing them to the ontologies. The diagram in Fig. 1 summarizes
OnTal’s use cases.

Fig. 1: OnTal’s use-case diagram.

2.2 Ontology Alignment Methods

OnTal uses ontology alignment methods to generate propositions regarding the
extension of one or more GOM ontologies with new concepts. Aligning two
ontologies means finding correspondences between their concepts, relations and
instances. Alignment methods, which base on different similarity measures[6],
are used to determine if a new concept already has an equivalent in GOM. In such
a case, the external concept can be mapped onto its counterpart; otherwise, it has
to be added to one of GOM’s domain ontologies together with its neighbourhood.
The alignment algorithm used by OnTal has been described in a detailed way in
[7, 8].

OnTal uses several ontology similarity measures. First, a combination of two
lexical measures is applied to the product of the set of external concepts and the
set of all concepts from GOM. These measures identify if two words have any
tokens in common (token similarity measure) and if they are generally similar
to each other (edit similarity). When the lexical similarity value is higher than
the minimum (which can be configured by the user), structural similarity is
determined for the given pair of concepts.

Structural similarity is computed with use of the cosine weight, which takes
into account the relevance of attributes, relations and neighboring nodes of two
ontological concepts. Pairs of concepts, which have both similarity values higher
than the minimal value, are presented to the user as ’mapping candidate pairs’.

Introducing new entities into the Grid Organization Memory must be done
in a controlled and limited way. However, in order to preserve their original
semantics, they must be added to GOM together with some surrounding. In
the presented approach the surrounding consists of all superclasses, subclasses,
neighboring nodes and instances of the processed concept. When such subgraph
of the external ontology is isolated, it is also searched for further similarities
and possible mappings. However, in contradiction to global approaches like
Similarity Flooding [9], this action is not recurrent and resulting changes are
local.

2.3 Implementation

OnTal has been implemented as a Java applet and deployed inside the K-WfGrid
Portal. The portal gathers multiple tools created in the K-WfGrid framework for
the purpose of workflow composition, execution, monitoring and assimilation of
knowledge. However, as the tool is only loosely dependent on Grid Organization
Memory’s ontologies, it can be used as a stand-alone applet, opened in a local
Web browser or the JDK’s appletviewer tool.

2.3.1 Ontology Processing

Ontology processing is facilitated by the Jena Ontology API [10]. Jena is
a Semantic-Web framework and provides broad functionality, including RDF,
RDFS and OWL language support, RDQL query processing and a rule-based

inference engine. In the OnTal tool, Jena’s facilities for OWL processing have
been widely used.

Ontologies are represented as OntModel objects which can be created on
the basis of an ontology file or URL. Many operations can be performed on
these models, e.g. listing of all classes, relations and particular instances. In
the process of comparing ontology entities and deducing about their similarity,
Jena’s representation of ontological concepts as OntClass objects has been used.
The information about the neighbors, attributes, subclasses, superclasses etc. of
such object can be easily retrieved and has been used for computing structural
similarity, as well as for extracting neighbourhood graphs to be visualized. In
addition to Jena, OWL-S API [11] has been used for initial analysis of service
descriptions provided by the user. This library focuses on processing of OWL-S
and provides a simple way to parse service descriptions and extract information
from them.

2.3.2 Ontology Visualization

Visualization of ontologies is equivalent to visualization of large graphs (con-
cepts/instances presented as nodes and properties/relationships as edges of a
graph) [12]. Most ontology tools have their own visualization modules (e.g.
Protege which uses OntoViz), which in most cases present the ontology as an
plain graph. For small ontologies standard UML modelling tools can be used.
Finally, multiple libraries for graphs visualization are available.

The most complicated problem of ontology visualization is placing ontology
elements (objects, properties, relations) on a 2D surface and enable viewing the
ontology on different detail levels. Displaying large ontologies in a clear way can
also be difficult. One solution to the size problem is clusterization [12], which
means that relatively strong connected nodes and their edges are represented
as one node, which decreases the complexity of visualization. Only when the
user wants to focus on a particular cluster, its content may be visualized as
well. Another solution is to visualize ontology as a set of concentric spheres (the
nodes are put on the sphere surface and the edges can cross the sphere in any
direction) as in the OntoSphere project. The presented methods may be used
jointly on different levels of detail.

In the OnTal tool, the Prefuse toolkit [13] was used. It was chosen because
of its flexibility and variety of graph layouts. As the visualization is necessary
for showing only the neighbourhood of given concepts, the graphs are not big;
however, the user may extend the visible area of the ontology with the neigh-
bourhood of any already visible node. Additionally, the graphs can be scrolled
and magnified/minimized. The input for visualization is stored in the form of
Jena OntModel objects; concepts and relations are extracted from these models
and respective Prefuse Node and Edge objects are created in the graph.

3 Details of OnTal’s Operation

This section presents functioning of OnTal tool from the user-centric perspective.
Main phases are described with reference to the graphical user interface in Fig. 2;
the activity diagram in Fig. 3 presents the algorithm of the tool’s operation.

Fig. 2: OnTal’s user interface.

Configuration of ontology alignment. Before the start of ontology align-
ment process, the user should choose the domain of the newly registered service
(button 5) – now it can be one of K-WfGrid pilot applications – Coordinated
Traffic Management (CTM), Flood Forecasting and Simulation (FFSC) or En-
terprise Resource Planning (ERP). Moreover, s/he can configure the similarity
measures after clicking on ’Configuration’ (button 10) – for all lexical similarity
measures, the weights and minimal values can be set. By default, similarity
measures have equal weight (0.5) and their threshold value is 0.2.

OWL-S service description processing. OWL-S description of some ser-
vice is processed by the OnTal tool after it is read in from the file indicated by

Fig. 3: Activity diagram of OnTal’s functioning.

the user (button 3). The loaded OWL-S file is scanned to identify concepts from
external ontologies. This activity may take about a minute due to the HTTP
connection to remote ontologies and the necessary search for same/similar enti-
ties in Grid Organization Memory. A progress dialog is displayed to show the
process status.

Concepts’ mapping propositions. When the service’s OWL-S description
is already analyzed, the concept mapping propositions generated by OnTal can
be displayed. The list of external concepts is shown (panel 4), together with a
list of mapping propositions for the currently highlighted external concept (panel
9). The user is served with visualized mapping propositions (panels 1 and 2)
and information on concepts’ similarity values (fields 6 and 7). The mapping
can be either accepted or rejected by clicking the relevant buttons (panel 8).
After mapping acceptation, the external concept is highlighted in green; isolated
concepts are marked with red.

GOM ontology change events generation. After finishing the ontology
mapping process, the tool generates ontology change events. These events are
described by the Change Ontology, which contains concepts describing possible
ontology modifications e.g. class addition or property change. Consequently,
for all external concepts, an ontological description of necessary changes is gen-
erated and displayed to the user who can save it in a file. Later, if the GOM
administrator accepts such a modification, it can be introduced to the knowledge
base through the Grid Organization Memory’s Event Dispatcher [14].

4 Summary

Knowledge extension is an important issue in Semantic Grid systems. In the K-
WfGrid project it is facilitated by the Knowledge Assimilation Agent and OnTal
tool, which has been presented in this paper. OnTal relies on the ontology align-
ment methods and uses information about the concept neighbourhoods to assist
the user in extending Grid Organizational Memory’s domain ontologies. The
tool is easy to use because of its semi-automation and produces limited changes
to the original ontologies, which can be easily controlled by the GOM’s admin-
istrator. It has been designed for a specific task and does not aim at present
to perform integration of complex ontologies or provide interoperability between
them. However, this assumption allowed to adapt the ontology alignment algo-
rithm to the specific of the use-case which results in successful functioning of
OnTal tool.

Acknowledgements. This work has been supported by European Commission,
Project IST-2004-511385 K-Wf Grid and Institute of Computer Science, AGH
University of Science and Technology, Cracow.

References

1. D. De Roure, N.R. Jennings, N.R. Shadbolt; The Semantic Grid: A future e-
Science infrastructure, in Grid Computing – Making the Global Infrastructure a
Reality, F. Berman, G. Fox, and A.J.G. Hey, Eds.: John Wiley and Sons Ltd.,
2003, pp. 437-470.

2. A. Gehre, P. Katranuschkov, R.J. Scherer; Management and integration of virtual
enterprise information on grid spaces through semantic web ontologies, in: Proc.
of ECPPM2006, Valencia, Spain, 2006.

3. C. Goble, S. Bechhofer; OntoGrid: A Semantic Grid Reference Architecture,
CTWatch Quarterly, Volume 1, Number 4, November 2005.

4. K-Wf Grid project (FP6-511385) website, http://www.kwfgrid.net.
5. Z. Balogh, E. Gatial, M. Laclavk, M. Maliska and L. Hluchy: Knowledge-based

Runtime Prediction of Stateful Web Services for Optimal Workflow Construction,
in: Proc. of 6-th Intl. Conf. on Parallel Processing and Applied Mathematics
PPAM 2005, R. Wyrzykowski et. al. eds., 2005, LNCS 3911, Springer-Verlag, pp.
599-607, ISSN 0302-9743, ISBN 3-540-34141-2. Poznan, Poland.

6. A. Maedche and S. Staab; Measuring similarity between ontologies, in: Proc. of
the European Conference on Knowledge Acquisition and Management – EKAW-
2002, LNCS 2473, Springer-Verlag, pp. 251-263, Madrid, Spain,

7. R. Slota, J. Zieba, M. Majewska, B. Kryza, J. Kitowski; Ontology Alignment
and Ontology Similarity for Extension of Service Ontology in Grid Environment,
in: Proceedings of Cracow Grid Workshop – CGW’05, M. Bubak, M. Turala,
K. Wiatr (Eds.), November 20-23 2005, ACC Cyfronet UST, 2006, Krakow, pp.
41-48.

8. R. Slota, J. Zieba, B. Kryza, J. Kitowski; Knowledge Evolution Supporting Au-
tomatic Workflow Composition, accepted for 2nd IEEE Conference on e-Science
and Grid Computing, Amsterdam 2006.

9. S. Melnik, H. Garcia-Molina, E. Rahm; Similarity Flooding: A Versatile Graph
Matching Algorithm and Its Application to Schema Matching, in: ICDE ’02:
Proceedings of the 18th International Conference on Data Engineering, IEEE
Computer Society, Washington, DC, USA, 2002, p. 117.

10. Jena homepage, http://jena.sourceforge.net.
11. OWL-S API homepage, www.mindswap.org/2004/owl-s/api/.
12. C. Fluit, M. Sabou, F. van Harmelen; Ontology-based Information Visualisation,

in Visualising the Semantic Web, Vladimir Geroimenko ed., Springer Verlag, 2002.
13. Prefuse toolkit homepage, http://prefuse.sourceforge.net.
14. B. Kryza, R.Slota, M. Majewska, J. Pieczykolan, J. Kitowski; Grid organiza-

tional memoryprovision of a high-level Grid abstraction layer supported by on-
tology alignment, The International Journal of FGCS, Grid Computing: Theory,
Methods and Applications, vol. 23, issue 3, Mar 2007, Elsevier, 2007, pp. 348-358.

Knowledge Assimilation Agent – Component
for Workflow-Based Grid Service Performance

Prediction, Workflow Result Estimation
and Semi-Autonomic Service Discovery

Zoltán Balogh1, Martin Šeleng1, Martin Malǐska1, Ladislav Hluchý1, Renata Slota2,

Joanna Zieba2, and Jacek Kitowski2,3

1 Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia
2 Institute of Computer Science, AGH University of Science and Technology,

Krakow, Poland
3 Academic Computer Centre CYFRONET AGH, Krakow, Poland

email: balogh@savba.sk

Abstract

Knowledge Assimilation Agent (KAA) is a knowledge-based component
for Grid service workflows, which comprises three basic functionalities:
assimilates run-time information about Grid services from different
sources and produces performance estimations of future Grid service
invocations (the KAA-Web Service), performs past workflow analysis
and produces workflow result estimations (the KAA-WXA tool) and
discovers new potential services through interactive semi-automatic on-
tology alignment (the OnTal tool). Individual tools responsible for each
of three functionalities are described in the article. Use of KAA func-
tionalities in scope of the K-Wf Grid project is described.

1 Introduction

The K-Wf Grid is a 6th FP IST [1] project which aims at developing a novel
knowledge-based approach to service-oriented Grid workflow composition and
execution. Knowledge Assimilation Agent (KAA) is one of the main knowledge-
producing components in scope of the K-Wf Grid project. KAA comprises
functionalities which enable knowledge-supported construction or execution of
Grid service-based workflows such as prediction of Grid service performances
and estimations of Grid workflow results. KAA also comprises semi-autonomic
ontology alignment, which enables discovery of potential services suitable for
use in Grid workflows. Tools which implement the above mentioned three most
important functionalities of KAA are described further in the article in separate
chapters.

2 Performance Estimation of Services for Grid Workflows

Performance estimations about Grid services are needed by several components
in the K-Wf Grid platform such as Automatic Application Builder (AAB) [2] and

the Scheduler [3]. Based on information provided by KAA, AAB selects most
stable hosts out of the all available ones. AAB provides a list of hosts and KAA
ranks individual hosts according to their availability and operation stability.
Historical information about services are used. The results are passed from AAB
to Scheduler, which is another consumer of KAA estimations. Scheduler needs
to select which deployment of a service is the best to invoke in a given context.
Estimation of service performance is dependent on the invocation context, i.e.
what are the invocation parameters and input resources of a service. KAA needs
to know the expected invocation context before making the estimation. The
central part of KAA is the KAA-Web Service (KAA-WS), which is a stateless
web service implementation through which third party components request and
retrieve required knowledge. KAA-WS implements the core learning algorithm
concretely an extended and improved instance-based learning technique [6-10].
There is an internal ontology model of Grid service performances, resources
and used invocation parameters which is called Knowledge Assimilation Schema
(KAS). A single service invocation is modeled as a Case (see Fig. 1). Each Case
has a Context and Result. Context can be related with Resource properties or
invocation parameters. The Result concept models resulting effects of the service
invocation. Another concept modeled by KAS is the Profile and Features which
enable customization of case retrieval (Fig. 1). KAS extends OWL [15] ontology.

Fig. 1: The Parts of the Knowledge Assimilation Schema (KAS).

KAA consumes information generated by third party components such as
Gemini (a monitoring infrastructure) and the Workflow Composition Tool (WCT)
and transform them into KAS representation. New information are added upon
completion of any grid workflow, which is detected by a component called KAA-
WXA. Using a retrieved workflow identifier, a component called KAA-Gemini
retrieves information about Grid services invocations and transforms them into
KAS representation.

The main scientific innovations of KAA are extension of instance based learn-
ing technique of WS performance prediction by enabling retrieval and inclusion
of semantic resource properties into the feature vector, enabling specification of
WS performance prediction profiles which specify feature vector and result to be
estimated and proposition of a novel ontology for IBL-based WS performance
prediction together with methodology extending classical Case-Based Reasoning
approach.

Fig. 2: Data Flow between KAA-WS and other relevant components.

KAA-WS enables estimation of various Grid service performance measures,
such as run-time, availability, accessibility or queue wait times. The prediction
is based on knowledge from the past such as invocation parameters and meta-
data about used resources. The extension of the tool is viable through simple
extension of the KAS ontology. Further details about the approach can be found
in [6-10].

3 Analysis of Past Grid Workflows

User Assistant Agent (UAA) [4] is another component using knowledge assimi-
lated by KAA. Workflows from the past are compared with the current workflow
using a Workflow XML Analyzer (KAA-WXA).

If identical workflow is found, the result of such workflows is offered to the
current user for potential reuse through UAA interface or user can used this
composed and fully filled workflow with data to submit it for computing. KAA-
WXA checks an XML database, produced by a Grid Workflow Execution Service
(GWES) [5], for new workflows, determines the context from the workflow (using
XPath expressions) and sends the results to the UAA in a format of a note.
If UAA has the same context and input data, the old note is overwritten by
the new one, thus ensuring information update. Workflow XML Analyzer is

Fig. 3: KAA-WXA Component Architecture.

based on XPath language [16] and all XPath queries are stored in configuration
file. KAA-WXA can be reused in all application which are based on XML files
parsing. When changes are made in a XML Schema (commonly user must build
entire project) only queries in configuration files must be changed. This means
that KAA-WXA is a generic tool reusable for parsing XML files. There are
other approach like DOM, SAX, Xerces or Castor. DOM and SAX tool have
a problem that they must know what is searched, so the tool is not generic or
is too robust. Xerces and Castor have a problem with XML Schemas: when a
XML Schema is changed entire project must be rebuild. In K-Wf Grid project
there are three applications: CTM, ERP, MM5. Every application in K-Wf Grid
project has own queries for input and output data like:

STATUS_PATTERN=/*/*[@name=’status’]/text()
STATUS_TEXT=!

The above expressions detect an element with name “status”, whose value
will be received by KAA-WXA and will generate a text with this value.

START_ZONE_PATTERN=/*/*[@ID=’startZoneId’]/*/*/*/text()
START_ZONE_TEXT=Start Zone!

This query is used in the CTM application and retrieves the ID of the Start
Zone.

KAA-WXA responsibility is also to forward input parameters, results and
other relevant information to the Workflow History portlet (see Fig. 4).

Fig. 4: Snapshot of the Workflow History Portlet embedded in the K-Wf Grid
portal.

4 Interactive Semi-Automatic Ontology Alignment

To extend knowledge gathered in the system during the process of new Grid
services’ registration which is a part of service discovery the OnTal tool has been
designed [13, 14]. It processes an OWL-S service description, maps its external
ontological concepts onto concepts already existing in the system knowledge
base (Grid Organizational Memory) and proposes a set of ontology extensions
validated further by a knowledge administrator.

OnTal uses the methods of ontology alignment [11] for mapping of concepts
from external ontologies onto corresponding entities in the system knowledge
base. In order to assess different aspects of concepts’ similarity, both lexical and
structural methods are used. The tool tries to find Grid Organizational Memory
equivalents (identical or very similar concepts) for all external concepts found in
the service description and visualizes pairs of mapped concepts to gather user’s
feedback. When some external concept doesn’t have any equivalent, it is added
to one of GOM’s ontologies together with its module (extended neighborhood in
the original ontology), so that its semantics is preserved. The methods described
above use the fact that OWL-S service descriptions are strongly structured and
only contain single concepts from external ontologies, which allows taking a local
approach to extending the system knowledge base (Grid Organization Memory)
with new concepts. Moreover, the characteristics of Grid Organization Memory’s

ontologies have also been taken into account during the algorithm’s design phase.
OnTal tool aims to support a knowledge engineer in his/her work during

discovery and registration of new Grid services for the system. The engineer can
view visualized concept mapping propositions along with their similarity values
and assess these propositions by accepting or rejecting them (see Fig. 5). Conse-
quently, the tool generates description of necessary ontology changes, which can
be then submitted to Grid Organization Memory. A more detailed description
of the tool’s functioning can be found in [14].

Fig. 5: OnTal User Interface.

5 Conclusion

In the article we have described a set of tools which provide the core functionality
of a component called Knowledge Assimilation Agent in scope of the K-Wf Grid
project. All the tools described in this article were implemented and are available
for use in other service-oriented Grid workflow environments were the reuse of
knowledge about services is required. Details about the K-Wf Grid project as
well about the described tools can be found at the project website [1].

Acknowledgements. This work is supported by projects K-Wf Grid EU RTD
IST FP6-511385, NAZOU SPVV 1025/2004, RAPORT APVT-51-024604, VEGA
No. 2/6103/6, VEGA 2/7098/27.

References

1. K-WfGrid Project, http://www.kwfgrid.eu
2. Lukasz Dutka, Piotr Nowakowski, Jacek Kitowski; Java-Based Component Ex-

pert Framework for Automatic Application Builder. In Proceedings of the Cra-
cow Grid Workshop 2004, pp.270-274, Academic Computer Centre CYFRONET
AGH, ISBN 83-915141-4-5, Poland 2005.

3. Marek Wieczorek, Radu Prodan, Thomas Fahringer; Scheduling of Scien-
tific Workflows in the ASKALON Grid Environment, ACM SIGMOD Record,
09/2005.

4. Laclavik, M., Gatial, E., Balogh, Z., Habala, O., Nguyen, G., Hluchy, L.; Experi-
ence Management Based on Text Notes (EMBET); Innovation and the Knowledge
Economy, Volume 2, Part 1: Issues, Applications, Case Studies; Edited by Paul
Cunnigham and Miriam Cunnigham; IOS Press, pp.261-268. ISSN 1574-1230,
ISBN 1-58603-563-0.

5. Andres Hoheisel, Thilo Ernst, Uwe Der; A Framework for Loosely Coupled Ap-
plications on Grid Environments. In: Grid Computing: Software Environments
and Tools. Cunha, Jose C.; Rana, Omer F. (Eds.), 2006 ISBN: 1-85233-998-5.

6. Balogh Z., Gatial E., Laclavik M., Maliska M., Hluchy L.; Knowledge-based
Runtime Prediction of Stateful Web Services for Optimal Workflow Construc-
tion. Proc. of 6-th Intl. Conf. on Parallel Processing and Applied Mathematics
PPAM’2005, R. Wyrzykowski et.al. eds., 2006, LNCS 3911, Springer-Verlag, pp.
599-607, ISSN 0302-9743, ISBN 3-540-34141-2. Poznan, Poland.

7. Balogh Z., Gatial, E., Laclavik, M., Hluchy, L.; Refinement of case retrieval for
instance-based Grid service performance prediction through semantic descrip-
tion of input data. In: J. Paralic, J. Dvorsky, M. Kratky (Eds.): Znalosti 2006,
Proceedings of 5th annual conference. VŠB-Techická universita Ostrava, Fakulta
elektrotechniky a informatiky, 2006, pp.151-158. February 2006, Hradec Kralove,
Czech Republic. ISBN 80-248-1001-8.

8. Balogh, Z., Hluchy, L.; Knowledge Assimilation for Performance Prediction of
Grid Services for optimal Workflow Execution. In: Proc. of 1-st workshop Grid
Computing for Complex Problems – GCCP 2005, VEDA, 2006, pp.135-144, ISBN
80-969202-1-9. November-December 2005, Bratislava, Slovakia.

9. Balogh Z., Gatial E., Laclavik M., Hluchy L.: Refinement of Case Retrieval
for Grid Service Performance Prediction through Semantic Description of Input
Data. In: Bubak, M., Turala, M., Wiatr, K. (editors): Proceedings of the Cra-
cow Grid Workshop ’05, Cracow, November 2005, pp. 59-65, published by ACC
CYFRONET AGH, Poland, April 2006. ISBN 83-915141-5-3.

10. Balogh, Z., Gatial E., Laclavik, M., Maliska, M., Hluchy, L., Oravec, V., Nguyen,
G.; Predicting Web Service Performance based on Web Service States and Input
Data Properties. Proc. of 8th Intl. Conf. informatics, SSAKI Bratislava, 2005, pp.
113-117. ISBN 80-969-243-3-8.

11. Zieba, J., Slota, R., Majewska, M., Kryza, B., and Kitowski, J.,: Ontology Align-
ment and Ontology Similarity for Extension of Service Ontology in Grid Envi-
ronment. In: Bubak, M., Turala, M., Wiatr, K. (eds.): Proceedings of the Cracow
Grid Workshop ’05, Cracow, November 2005, published by ACC CYFRONET
AGH, Poland, April 2006. ISBN 83-915141-5-3.

12. Kryza, B., Slota, R., Majewska, M., Pieczykolan, J., Kitowski, J.; Grid Organi-
zational Memory – An Overview of Semantic Approach to Providing High-Level
Grid Abstraction Layer, FGCS, 2006, in print.

13. Maedche, A., Staab, S.; Measuring similarity between ontologies, In: Proc. of the
European Conference on Knowledge Acquisition and Management – EKAW-2002,
LNCS 2473, Springer-Verlag, pp. 251-263, Madrid, Spain,

14. Slota, R., ZIEBA, J., JANUSZ, M., Kitowski, J.; OnTal - the tool for ontology
extension in knowledge-based grid systems, CGW’06.

15. OWL Web Ontology Language Overview, http://www.w3.org/TR/

owl-features/

16. XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath

User Assistant Agent: Towards Collaboration

and Knowledge Sharing in Grid Workflow

Applications

Michal Laclav́ık, Martin Šeleng, and Ladislav Hluchý

Institute of Informatics, Slovak Academy of Sciences,
Dubravska cesta 9, 845 07 Bratislava, Slovakia

email: laclavik.ui@savba.sk

http://ikt.ui.sav.sk

Abstract

This paper focuses on a User Assistant Agent for collaboration and
knowledge sharing in Grid Workflow applications. The theory, imple-
mentation and use of such system – EMBET are described. The key
idea is that a user enters notes in a particular situation/context, which
can be detected by the computer. Such notes are later displayed to
other or the same users in a similar situation/context. The context
of a user is detected from computerized tasks performed by the user.
Also intelligent components in the grid middleware such as monitoring,
workflow analysis or workflow composition can provide context sensi-
tive notes to be displayed for the user. The User Assistant Agent was
created in scope of the K-Wf Grid project, in which grid services are
semi-automatically composed to workflows dealing with a user problem.
It was identified that even when services and input and output data
are well semantically described, there is often no possibility to com-
pose an appropriate workflow e.g. due to missing specific input data
or fulfillment of a user and application specific requirements. To help a
user in workflow construction, problem specification or knowledge reuse
from past runs, it is appropriate to display notes and suggestions en-
tered by users or intelligent middleware components. Thus experts can
collaborate and fill up application specific knowledge base with useful
knowledge, which is shown to users in the right time.

1 Introduction

The experience management [1] solutions are focused on knowledge sharing and
collaboration among users in organizations. A lot of companies have recognized
knowledge and experience as the most valuable assets in their organization [2].
Experience is something that is owned by people only, not obtainable by com-
puter systems. Anyhow, according to the state of the art in the area we can
a create experience management system, which will manage (not create) expe-
rience and will be able to capture, share and evaluate experience among users.
We can understand experience through text notes entered by a user. Such form
of experience is the most understandable for humans, but it can be grasped by
a computer system, though only partially. A computer system needs to return

experience in a relevant context. Thus we need to model the context of the
environment and capture and store the context of each entered note. In this
paper we describe such solution for the experience management based on text
notes – EMBET entered by users.

The key idea is that a user enters notes in a particular situation/context,
which can be detected by the computer. Such notes are later displayed to other
or the same users in a similar situation/context. The context of a user can be
detected from many sources – actions provided in grid environment (portal, sub-
mitted jobs, past runs), a step in a business process or a workflow management
system, used files or detection of other events performed in the computer. The
solution was used and evaluated in the Pellucid IST project1 and it is further
developed in the K-Wf Grid IST project2.

The main objective of the User Assistant solution based on EMBET system3

is to provide a simple and powerful collaboration and knowledge sharing plat-
form based on experience management infrastructure, which can be applicable
in many areas especially in grid virtual organizations. The idea is to return
information, knowledge or experience to users when they need it. Therefore it
is crucially important to model and capture a user context and the described
solution can be used only in applications where actions/tasks performed by a
user are computerized and can be captured and reported to the system in the
form of events.

The EMBET system can be applied in a different application. In scope of this
article we focus on its use to support grid applications particularly knowledge
support for construction, execution and reuse of grid workflows and results.
When constructing a workflow from grid services, a user needs to have knowledge
about problems, services, models or input and output data. Such knowledge
can be formalized only partially and workflows solving a user problem can be
composed only semi-automatically with user help. Experience/notes entered by
experts can help users to create the best workflow for their needs.

The article first discusses a theoretical approach of the EMBET solution
and its architecture, followed by examples given for the Flood Forecasting grid
application.

2 Theory of the Approach

The EMBET system is built on several theories and dealing with several theo-
retical challenges:

• Experience Management,
• Context Modeling and Context Detection,
• and Context Matching

1http://www.sadiel.es/Europa/pellucid/
2http://www.kwfgrid.eu/
3http://ikt.ui.sav.sk/?page=software{_}doc/embet.php

2.1 Experience Management

According to Bergman [1], the experience management is simply the capability
to collect lections from the past associated to cases. We have a person who has a
problem p, which is described in a certain space, called the Problem Space (P).
In the experience Management system we have Case-Lesson pairs (c, l), where
we have a Case Space (C) and a lesson space (L). To provide appropriate lesson
learned we need to fulfill the following steps:

1. User context detection from the environment which describes problem P
2. Our Model is described by ontology and Notes are stored with associated

context, which describes space C
3. Notes represent learned lesson L which is associated with space C (note

context). The note context is matched with a user problem described by
the detected user context. Context matching techniques are applied to
find match between knowledge and user context. As a result all applicable
notes are matched and returned.

4. The lesson is left to be applied by the user by reading appropriate notes.

More on applying this theory in EMBET can be found in [3], [4].

2.2 Context Modeling and Context Detection

For context and also knowledge modeling we use semantic web approach – on-
tologies and the CommonKADS [5] methodology. We are able to model and
detect context when the application domain is well modeled using ontologies.
Our model is an ontology model based on five main elements: Resources, Ac-
tions, Actors, Context and Events. Other ontology models can be attached
easily to the model where concepts from foreign ontology are specified as con-
text if not specified otherwise. The main idea is to model environment events
which provide context of the user. For more details see [6], [7].

In EMBET we need to detect user context from events transformed to the on-
tology model. For each application we need to specify an appropriate algorithm
for user context updating based on user related events [4].

We also need to detect context of information, knowledge or experience en-
tered by a user. In Section 4 we describe a concrete example of such detection.
Detected context is only suggested to the user in form of checklist and a user con-
firms final knowledge /note context. A checklist is created of user current context
and context detected from text of notes using automatic semantic annotation
techniques of a knowledge note text. This semantic annotation is described in
detail in [8], [9].

2.3 Context Matching

The role of EMBET is to assist users in relevant knowledge/suggestions, which
are applicable to their current situation. EMBET needs to return experience
in context where experience is relevant. Thus we need to match context of
knowledge and context of a user to return appropriate knowledge to the user. In

K-Wf Grid we use a simple matching technique where ontology elements present
in knowledge context have to be found in user context; otherwise knowledge notes
are not displayed. However, this simple matching algorithm is not sufficient in
some applications and we need to use technologies based on similarity matching
[10], [11]. Another problem concerning voting on knowledge notes occurs, if
similarity mechanisms are used since a vote weight depends on a similarity value
and need to be determined.

Currently we are developing and testing a new context matching algorithm
based on intersection of user and knowledge context.

We define 3 sets of concepts in (1):

U = {u1, u2, ..., un} , K = {K1, K2, ..., Km} , Wi = {ki1, ki2, ..., kil} (1)

Where U is a set of user context, K is a set of knowledge notes and Wi is a
set of knowledge context for knowledge Ki.

A problem occurs in context matching, because there are four different ways
to match user context and knowledge context (2).

U = Wi, U ⊂ Wi, U ⊃ Wi, U 6⊂ Wi ∧ Wi 6⊂ U ∧ U ∩ Wi 6= ∅ (2)

It is clear that the best option is the first one because there is exact match in
contexts. The question is what about the other equations? We decide to define
the relevance ri (3), (4), which sorts the detected knowledge from best to worst.

ri =
|U ∩ Wi|

|U ∪ Wi|

(3)

In (4) we show different approach which can compute different relevance in
some cases.

ri =
2 |U ∩ Wi|

|U | + |Wi|

(4)

For all knowledge where ri > 0 we create sorted list where the most relevant
knowledge is on the top.

Both approaches (3), (4) give equal relevance in the two cases described in
(5) and (6):

U = {u1, u2} Wi = {ki1, ki2, ki3} , u1 = ki2 (5)

U = {u1, u2, u3} Wi = {ki1, ki2} , u2 = ki1 (6)

This equality is our future work. In addition, we would like to deal with
voting on displayed knowledge notes. We need to calculate different voting
weights based on relevance of user and knowledge context.

In our future work we will also evaluate usage of both relevance approaches
(3), (4).

3 Architecture and Technology

Architecture of EMBET (Figure 1 left side) consists of 3 main elements:
• Core of the system
• GUI
• System Memory

Fig. 1: EMBET Architecture and Graphical User Interface.

EMBET Core provides the main functionality of EMBET. It determines a
User context and searches for the best knowledge (in a form of text notes) in its
Memory. The knowledge is subsequently sent through XML-RPC or SOAP to
EMBET GUI.

EMBET GUI Graphical User Interface (Figure 1 right side) visualizes the
knowledge and the user’s context information to the user. Furthermore it informs
the EMBET core about user context changes. The context can be reported also
directly to the EMBET core from external systems (e.g. from workflow systems,
received emails, or file system monitors). EMBET GUI visualizes knowledge
based on XML4 transformation to HTML through XSL5 Templates processing.
Moreover EMBET GUI has an infrastructure for a note submission and context
visualization. It further provides a user with feedback (voting) on knowledge
relevance. In addition it contains a user interface for knowledge management by
experts where an expert can change a note and its context.

4http://www.w3.org/XML/
5http://www.w3.org/TR/xslt

EMBET Core – EMBET GUI interface is used for an XML data ex-
change between EMBET Core and EMBET GUI. The Interface is based on the
XML-RPC6 protocol for an XML message exchange.

Interface to Memory is used for information and knowledge extraction and
storage. It is based on RDF/OWL data manipulation using Jena API, which
EMBET Core uses to extract and store knowledge.

Experience is represented by text notes, an unstructured text, entered by a
user. Ontology is stored and managed in the Web Ontology Language (OWL)7.
The Jena Semantic Web Library8 is used for knowledge manipulation and knowl-
edge storing. The Java technology is used for developing the system and user
Interface is based on the JSP technology. The XSL templates are used to trans-
form XML generated from OWL to displayed HTML. Since the Java technology
is chosen as background for the EMBET, a choice of the web server – Jakarta
Tomcat9 and implementation middleware is reasonable.

4 Example of Use

To better illustrate the use of EMBET in the process of user assistance, we
present the following example from the K-Wf Grid project’s flood forecasting
application, which extends the flood prediction application of the CROSSGRID
(IST-2001-32243) [12] project. The application’s main core consists of simulation
models series for meteorological, hydrological and hydraulic predictions. The
models are organized in a cascade, with each step of the cascade being able to
employ more than one model. For example, the first step – the meteorological
weather prediction – can be computed using the ALADIN model, or the MM5
model.

Consider that the user has used the MM5 meteorology model and he/she
wants to describe its properties (gathered knowledge), which may be relevant
for other users. The proposed model of interaction is as follows:

• A user enters a note through UAA, stating that “the MM5 model is not
appropriate for weather forecast in September for the Bratislava area”
(Fig. 2).

• From the workflow in which the user states this note, we know directly the
current user context (checked items on Fig. 2)

• Some of current context can be relevant to note and some does not have
to be. The note is processed and its text related to the context, as well
as the relevant context items are found in the ontology memory (GOM)
(Fig. 2). In this case, by finding the text MM5 we can assume that “MM5
Meteorology Service” is the relevant part of the context. There is other
context relevant information which can be detected like “September”, the
time in which this note is valid.

6http://www.xmlrpc.com/
7http://www.w3.org/TR/owlfeatures/
8http://www.sf.net/
9http://jakarta.apache.org/tomcat/

Fig. 2: Left: Entering new Note; Right: Note Context Detection, checked items
are current user context, unchecked items are elements detected from text of the
note. User selects only those items which are relevant.

• After the context detection, the user is provided with a checklist (Fig. 2)
where the user may select only the relevant parts of the note context.

• A user selects parts of the context, which were detected by the system
as really relevant. He/she can modify the contents of the list and finally
submit the note.

• Each time anyone works with the MM5 service for the Bratislava area
in September, the note is displayed or it can be also displayed in similar
contexts

• Each note can be evaluated by a user as being “good” or “bad” and the
current results are always displayed along with the vote.

This model gives a good basis for experience management and knowledge
sharing in a virtual organization as well as for application-related collaboration
among users.

5 Conclusion and Future Work

Our solution was evaluated on the K-Wf Grid IST project, focused on building
grid-based workflows, where users need to collaborate and share knowledge about
different applications, computational models, grid resources or data. Previously
it was evaluated on a selected administration application in the Pellucid IST
project, where the context or the problem of a user was detected in the Workflow
Management Application. Such solution may be applied in many further areas
where the user problem can be detected from computerized tasks. Usually this
occurs in any business process where actions are performed via a computer,
e.g. workflow processes, document management, supply chain management or
dynamic business processes where email communication is in use.

People like to enter notes or memos. This is a natural way of notifications for
themselves or others to remind them of problems, activities or solutions. There-
fore we think that such solution can be successfully applied and commercialized.

In K-Wf Grid we help users in workflow construction and execution by dis-
playing knowledge notes and suggestions entered by the same or different users.
Thus experts can collaborate and fill up application specific knowledge base with
useful knowledge which is shown to users in the right time. In addition, intel-
ligent components create and provide knowledge notes with attached context
to the EMBET systems concerning past workflows runs or computed results.
Thus users can reuse old workflows or results of execution, which are displayed
in proper user context by EMBET system.

Acknowledgements. This work is partially supported by projects K-Wf Grid
EU RTD IST FP6-511385, NAZOU SPVV 1025/2004, RAPORT APVT-51-
024604, SEMCO-WS APVV-0391-06, VEGA No. 2/6103/6, VEGA 2/7098/27.

References

1. Bergmann, R.; Experience Management: Foundations, Development Methodo-
logy, and Internet-Based Applications (Lecture Notes in Artificial Intelligence),
2002

2. Davenport, T.H., Prusak, L.; Working Knowledge, ISBN 1578513014, 2000
3. Laclavik, M., Gatial, E., Balogh, Z., Habala, O., Nguyen, G., Hluchy, L.; Experi-

ence Management Based on Text Notes (EMBET); Innovation and the Knowledge
Economy, Volume 2, Part 1: Issues, Applications, Case Studies; Edited by Paul
Cunnigham and Miriam Cunnigham; IOS Press, pp. 261-268. ISSN 1574-1230,
ISBN 1-58603-563-0.

4. Michal Laclavik; Experience Management based on Ontology and Text Notes
(The EMBET System); Work submitted for the RNDr. degree; Ustav Informatiky,
Prirodovedecka fakulta, Univerzita Pavla Jozefa Safarika v Kosiciach, 2005

5. August Schreiber et al., Knowledge Engineering and Management: the Common-
KADS methodology, ISBN 0262193000, 2000

6. Laclavik, M., Babik, M., Balogh, Z., Hluchy, L.; AgentOWL: Semantic Knowledge
Model and Agent Architecture; In Computing and Informatics. Vol. 25, no. 5
(2006), pp. 419-437. ISSN 1335-9150

7. Michal Laclavik, Marian Babik, Zoltan Balogh, Emil Gatial, Ladislav Hluchy; Se-
mantic Knowledge Model and Architecture for Agents in Discrete Environments;
In: Frontiers in Artificial Intelligence and Applications, Vol 141, 2006. Proc. of
ECAI 2006 Conference, G.Brewka et al.(Eds.), IOS Press, pp. 727-728. ISBN
1-58603-642-4 ISSN 0922-6389 2006

8. Laclavik, M., Seleng, M., Gatial, E., Balogh, Z., Hluchy, L.; Ontology based Text
Annotation – OnTeA; Information Modelling and Knowledge Bases XVIII. IOS
Press, Amsterdam, Marie Duzi, Hannu Jaakkola, Hannu Kangassalo, Yasushi
Kiyoki (Eds.), 2007

9. Michal Laclavik, Martin Seleng, Marian Babik; OnTeA: Semi-automatic Ontol-
ogy based Text Annotation Method; In: Tools for Acquisition, Organisation and
Presenting of Information and Knowledge. P. Navrat et al. (Eds.), Vydavatelstvo
STU, Bratislava, 2006, pp. 49-63, ISBN 80-227-2468-8.

10. Michal Laclavik; Ontology and Agent based Approach for Knowledge Manage-
ment; PhD Thesis submitted for the degree philosophiae doctor; Institute of
Informatics, Slovak Academy of Sciences, field: Applied Informatics, 2005

11. Balogh Z., Budinska I.; OntoSim – Ontology-based Similarity Determination of
Concepts and Instances. In: Tools for Acquisition, Organisation and Presenting of
Information and Knowledge. P. Navrat et al. (Eds.), Bratislava, 2006, pp. 64-70,
ISBN 80-227-2468-8.

12. Hluchy L., et al.; Flood Forecasting in CrossGrid project. In: Grid Computing,
2nd European Across Grids Conference, Nicosia, Cyprus, Jan 28-30, 2004, LNCS
3165, Springer-Verlag, 2004, pp. 51-60, ISSN 0302-9743, ISBN 3-540-22888-8

K-Wf Grid Portal: a Web Interface to Semantic

Workflows

Emil Gatial1, Branislav Simo1, Giang Nguyen1, Michal Laclavik1, Ladislav Hluchý1,

Tilman Linden2, and Bartosz Kryza3

1 Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia
2 Fraunhofer FIRST, Berlin, Germany

3 Academic Computer Centre CYFRONET AGH, Krakow, Poland
email: emil.gatial@savba.sk

Abstract

The K-Wf Grid portal provides a central user interface, point of
interaction and access to the components developed within the K-Wf
Grid project. The main functionality of K-Wf Grid portal is to
provide users with access to the components developed within the
K-Wf Grid project and other requested resources. This covers the
components for workflow specification, workflow management and
visualization, components dealing with the metadata management
and components for accessing the other Grid services. Moreover K-Wf
Grid portal includes collaborative feature provided by lightweight
discussion portlet. Architecture of K-Wf Grid portal is based on the
Gridsphere portal framework that provides an open-source portlet
based Web portal. GridSphere enables developers to quickly develop
and package third-party portlet web applications that can be run and
administered within the GridSphere portlet container. The basics
features of Gridsphere include management of user accounts, groups
and access to specific portlets, providing customized layout. Portlets
provide “mini application” that can either display informational
content or provide access to other components. The paper describes
K-Wf Grid portal architecture along with the user interfaces of the
key components developed within the K-Wf Grid project.

Keywords: K-Wf Grid, Workflow, Gridsphere, ontology, portlet, Java
applet, AJAX.

1 Introduction

K-Wf Grid application portal provides convenient web based user interface for
the tools and applications being developed in the context of the K-Wf Grid
project [1] (simplified component structure is shown on the Fig. 1). The Users
with valid portal account can access various portal sections focused on K-Wf
Grid’s applications and associated knowledge, application monitoring and grid
services.

The portal is built on the Gridsphere portal framework [2]. The framework
is an implementation of a portlet paradigm defined in JSR-168 Portlet API

Specification – portlets are self-contained components generating just part of
the portal page, independent from each other that are pluggable into the portal.
The Gridsphere framework provides the environment for running the portlets,
portlet state management, session management and various other tasks. The
gist of the K-Wf Grid portal development lies in the development of the portlets
providing user interfaces to various K-Wf Grid software components.

Portlets can be assimilated into the portal web pages with customized layout.
KWf Grid portal includes many different components (portlets) that access the
components of K-Wf Grid.

Fig. 1: Basic software architecture of K-Wf Grid project.

2 Used Technologies

K-Wf Grid portal uses various technologies to produce application logic via
the user interface by connecting to background components. Most of the user
interfaces are wrapped within the portlet space, which dimensions are tailored
to application needs. The portlets wrapping other components show a very easy
way how to integrate components developed by diverse project partners. The
following list enumerates used wrapped technologies:

• Server side technologies like JSR-168 portlet, JSP, XSLT or GridSphere UI
tags – implemented components must be periodically processed by server
and refreshed after each action.

• Client side technologies like JavaScript and Java applets – usually loads to
client browser and runs independently of the portal. While Java applets
may use plenty of communication ways (using XML-RPC, web services,
JMS, etc), the JavaScript client applications have the only viable way how
to communicate with server is using AJAX methodology.

3 Portal Structure

The layout of K-Wf Grid portal components has structure as depicted of the
schema (Fig. 2). The layout is separated into 3 main panels:

• Application panel – comprises the components regarding the workflow and
user supporting applications.

• Knowledge panel – encompasses the components that processing the data
and information stored in the GOM (Grid Organizational Memory). Such
data are relevant during the semantic workflow composition. The most
relevant example of such component is a KAA (Knowledge Assimilation
Agent) [3],

• Performance monitoring and Analysis panel – contains components that
access and present monitoring data.

Every panel is further divided into several panels where the particular com-
ponents are located.

Fig. 2: K-Wf Grid portal layout structure.

4 User Interface in More Detail

From the technological point of view there are several typical interesting com-
ponents characterized by using of specific combination of technologies. Since

full description of developed portal components can lead to stodgy enumera-
tion of components, the following paragraphs will describe only some typical
representatives with brief technology description.

4.1 Control Panel

The most relevant portlets reside on the Control panel, such as the Workflow
portlet which provides cute interactive interface to GWES (Grid Workflow Exe-
cution Service) component [4] via included GWUI applet. This applet is tightly
coupled with other two visual components Task list and Workflow control that
are implemented as applets wrapped within the small portlets. This portlet
allows users to manage a semantic composed workflow by the well arranged
workflow graph.

Next component residing the Control panel is a User Assistant (UA) portlet
which provides access to the User Assistant Agent (UAA) component [5]. This
portlet allows user to specify a problem and view the notes relevant to such
problem. UAA component can advise the user on already composed workflows
for similar problem.

Originally the interface is implemented as a servlet along with the use of
XSLT technology and it is wrapped by the UA portlet. Moreover, UA portlet
implements dynamic refreshment mechanism using AJAX technology. The great
advantage of using the AJAX methodology comes with sending an asynchronous
requests without continuously reload the page which can otherwise look disturb-
ing. Refresh mechanism works similarly as conventional ‘iframe’ refreshment [6]
except that the client browser periodically checking the incoming value instead
of executing the JavaScript fragments within the ‘iframe’ tag.

Fig. 3: Main panel of K-Wf Grid portal sketching the Workflow applet, User
assistant, Task list and Workflow control component.

Picture (Fig. 3) shows layout of the user interface components on the most
important portal panel – Control panel.

4.2 Knowledge Browser Panel

GOM Browser portlet employs services implemented in GOM [7] and allows user
to browse and manipulate the specified ontology stored within (Fig. 4). While
the portlet manages access to the GOM resources the visualization of ontology
is mostly based on the JavaScript (XML parser and AJAX) that moves the
processing on the client browser. This speeds up the process of visualization
and makes the notion of seamless application.

Fig. 4: The screenshot of knowledge browser panel.

The GOM browser portlet provides following capabilities:

• Ontology browsing – such feature is the core of this component, but also
the most complicated. The algorithms for recursive backward ontology
processing, OWL tags parsing, dynamic DOM object creation, event han-
dling must be implemented and well coordinated in order to provide true
client-side application based purely on technologies such XML, JavaScript
and AJAX.

• Update mechanism – periodically sends request for ontology updates. It is
implemented like that in UA portlet (see Section 4.1). The only difference
is that the page is not reloaded (in case of UA portlet), but the update
response contains OWL data about updated fragments of ontology.

• Ontology modifications – features includes ontology fragment (classes or
instances) addition and removal. Such features are implemented on the
client side as sending the RDF fragments describing the type of action
(modification, addition or removal) and modified resources. On the server
side, particular service is called according to the recognized action with spe-
cific resources. The changes are almost immediately visible via described
update mechanism.

4.3 Data Browser Panel

Data Browser portlet wraps servlet for accessing Grid services such as GridFTP
transfer, RLS service. Using this portlet user can download or upload files
from/to specified storage element. Moreover, the Data Browser can be used as
a stand alone servlet accessed directly from URL request.

The user interface is dynamically created on the client-side like in the case of
GOM browser. The difference is that the dynamic directory structure is made
of data provided via a GridFTP service provided on the server side.

4.4 Log Viewer Panel

Logging portlet shows logging messages produced by the project components,
thus making it possible to monitor inner workings of those components. It is
mainly meant for component developers as a convenient way of monitoring of
their software and the cooperation of all the projects components. The portlet
is made of the portlet, JSP and UI tags technology.

4.5 Discussion Panel

Discussion portlet is lightweight collaborative portlet. User can create new top-
ics, answer to existing topics and view topic’s threads or topics only. This porltet
is integrated with UAA to annotate text of topics. The portlet is implemented
as a portlet using UI tags accessing the database via persistent services.

5 Conclusion

The main innovation of the portal is providing a uniform access to the com-
ponents developed within the K-Wf Grid project with using the technologies
such as AJAX for seamless communication between client and server. The in-
terfaces are wrapped by the JSR-168 compliant portlet and deployed within the
Gridsphere portal framework. Moreover, the development and testing of por-
tal components had exposed some interesting comparisons of used technologies.
For example, the user interfaces made by AJAX methodology demonstrated a
viable alternative to Java applets. Both technologies provide highly interac-
tive client-side applications, but the components using AJAX produce code that
is considerably smaller (and therefore are downloaded much faster to a client

browser) than components using Java applets, but on the other hand JavaScript
applications are more difficult to debug.

Acknowledgements. This work is supported by projects K-Wf Grid EU RTD
IST FP6-511385, NAZOU SPVV 1025/2004, RAPORT APVT-51-024604, VEGA
No. 2/6103/6.

References

1. K-WfGrid Project – http://www.kwfgrid.eu

2. Gridsphere web page – http://www.gridsphere.org

3. Balogh Z., Hluchy L.: Knowledge Assimilation for Performance Prediction of Grid
Services for optimal Workflow Execution. In: Proc. of 1-st workshop Grid Com-
puting for Complex Problems – GCCP 2005, VEDA, 2006, pp.135-144, ISBN 80-
969202-1-9. November-December 2005, Bratislava, Slovakia.

4. Hoheisel, A.: User Tools and Languages for Graph-based Grid Workflows. In:
Special Issue of Concurrency and Computation: Practice and Experience, Wiley,
2005.

5. Laclavik M., Gatial E., Balogh Z., Habala O., Nguyen G., Hluchy L.: Experi-
ence Management Based on Text Notes (EMBET). eChallenges 2005, In: Proc. of
eChallenges 2005 Conference, 19-21 October 2005, Ljubljana, Slovenia, Innovation
and the Knowledge Economy, Volume 2, Part 1: Issues, Applications, Case Stud-
ies; Edited by Paul Cunnigham and Miriam Cunnigham; IOS Press, pp.261-268.
ISSN 1574-1230, ISBN 1-58603-563-0.

6. AJAX Patterns – http://ajaxpatterns.org/Unique_URLs.
7. Bartosz Kryza, Jan Pieczykolan, Marta Majewska, Renata Slota, Marian Babik,

Adrian Toth, Jacek Kitowski, Ladislav Hluchy. Grid Organizational Memory –
Semantic Framework for Metadata Management in the Grid. Accepted for Cracow
Grid Workshop’06, October 15-18, 2006, Cracow, Poland.

Service-Based Flood Forecasting Simulation

Cascade in K-Wf Grid

Ondrej Habala, Martin Malǐska, and Ladislav Hluchý

Institute of Informatics, Slovak Academy of Sciences,
Bratislava, Slovakia

email: Ondrej.Habala@savba.sk

Abstract

Flood Forecasting Simulation Cascade is a flood prediction applica-
tion, using series of meteorological, hydrological, and hydraulic simula-
tion models to predict possible flood risks. This application has been
developed for several years, and in the K-Wf Grid project has been
implemented as a set of grid services, using the WSRF standard. In
this article we describe its architecture, implementation details, usage
scenarios, user interfaces, and our experiences in using WSRF standard
and K-Wf Grid middleware for flood prediction.

1 Introduction

Prediction of natural disasters is an important part of every public early warning
and risk assessment system. This applies also in the area of flood prediction.
The process of flood prediction is of complex nature, since it requires knowledge
of future weather conditions, which is a complex requirement in itself. The
Flood Forecasting Simulation Cascade (FFSC) application of the K-Wf Grid [10]
project is a system, which attempts such complex task, using a set of several
simulations, performed in stages – weather prediction first, followed by watershed
integration, hydrological prediction for the target river, and finally hydraulic
simulation for the target area. The application also contains several visualization
modules, which can be used to display results from all stages in several ways
– for example, the final water flow simulation can be displayed as a series of
2D images, or as a 3D animation, suitable also for 3D display systems, like the
CAVE environment. Each stage of the application can be performed by multiple
simulation models, depending on the characteristics of the target area and on
user preferences.

The second chapter describes the history of the flood prediction application.
The third chapter provides a short introduction to the K-Wf Grid concept, and
the rest of tha paper deals with the flood prediction application, and its operation
using the K-Wf Grid middleware.

2 History of Flood Forecasting Simulation Cascade

The FFSC application has been developed since 2002, when the IST project
ANFAS (Data Fusion for Flood Analysis and Decision Support) commenced.

This project tried to solve the final part of the flood simulation – the water flow
in the target basin. The hydraulic simulation model FES-WMS [1] has been
used; it later evolved into the now-used DaveF model [2]. As a testing area was
selected part of the river Vah, and topographical data for this area has been
obtained.

The Flood forecasting application has evolved during the CROSSGRID pro-
ject [5] from single model application to the large cascade of models integrated
by support tools. In the ANFAS project the Flood forecasting application was
based on water hydraulics simulation model. But it was insufficient for real time
forecasting and it has created requirement for involving the simulation of mete-
orological a hydrological processes as precursors to the flood forecasting process.
Such integrated process is quite complex and requires a lot of computational
power and sophisticated software tools. And this was task for the CROSSGRID
project.

The cascade takes inputs from our national provider of meteorological analy-
sis data – Slovak hydro-meteorological institute SHMU. This data cover central
Europe and are processed in the cascade by the meteorological models (Al-
adin, MM5) to obtain higher resolution data for target area (which is noticeably
smaller in contrast to central Europe). Outputs of the meteorological models
are used in two ways: they are visualized in order to allow the user to interact
the cascade execution (the user can decide to stop some part of cascade) and
they are inputs for the next step in the cascade – the hydrological processing.
This process is organized in a virtual organization [3].

After CROSSGRID has finished, the application has been further developed
in the MEDIGRID IST project [7]. While this project targeted mainly cross-
platform usage of grid systems, it has also contributed to the development of a
SOA-based [4] flood forecasting cascade. The services are based on the WSRF
standard implementation [8] from the Globus toolkit version 4 (GT4) [9]. It is
a Java implementation of core web (grid) services with security based on X.509
certificates, notifications and other features. Each of the system components
– simulation models, data providers, information services or other supporting
services – are exposed as a web service. This schema is also used in the K-
Wf Grid project, where it is further expanded with workflow management and
knowledge management tools.

3 Knowledge-Based Grid Computing in K-Wf Grid

The idea of the project K-Wf Grid is based in the observation, that users often
have to learn not only how to use the grid, but also how to best take advantage
of its components, how to avoid problems caused by faulty middleware, appli-
cation modules and the inherent dynamic behavior of the grid infrastructure
as a whole. Additionally, with the coming era of resources virtualized as web
and grid services, dynamic virtual organizations and widespread resource shar-
ing, the variables that are to be taken into account are increasing in number.
Therefore we tried to devise a user layer above the infrastructure, that would

be able to handle as much of the learning and remembering as possible. This
layer should be able to observe what happens during application execution, infer
new knowledge from these observations and use this knowledge the next time an
application is executed. This way the system would – over time – optimize its
behavior and use of available resources.

Fig. 1: K-Wf Grid architecture.

The main interaction of users with the system occurs through the Web Portal
(see architecture in Fig. 1). Through it, users can access the grid, its data and
services, obtain information stored in the knowledge management system, add
new facts to it, construct and execute workflows. The portal consists of three
main parts, the Grid Workflow User Interface (GWUI), the User Assistant Agent
(UAA) interface, and the portal framework based on GridSphere [6], including
collaboration tools and interfaces to other K Wf Grid modules. GWUI is a Java
applet visualization of a Petri net-modeled workflow of services, in which the
user can construct a workflow, execute it and monitor it. UAA is an advisor,
which communicates to the user all important facts about his/her current context
– the services he/she considers to use, the data he/she has or needs. Apart
from automatically generated data, the displayed information contains also hints
entered by other users, which may help anyone to select better data or services
or avoid problems of certain workflow configurations. This way the users may
collaborate together and share knowledge.

Under the Web Portal lies the Workflow Orchestration and Execution mod-
ule, composed of several components. These components together are able to
read a definition of an abstract workflow, expand this definition into a regular
workflow of calls to service interfaces, map these calls to real service instances
and execute this workflow to obtain the expected results, described in the origi-
nal abstract workflow. This way the user does not need to know all the services
that are present in the grid and he/she is required only to state what result is
required.

To be able to abstract the grid is such a way as described in previous para-
graph, the system has to know the semantics of the grid environment it operates
on, and so we need to employ serious knowledge management, computer-based
learning and reasoning. This is the area of the Knowledge module, which is
split into the storage part – Grid Organization Memory (GOM), and the learn-
ing part – Knowledge Assimilation Agent (KAA). KAA takes observed events
from the monitoring system, maps them to the context of the performed oper-
ation and extract new facts from them. These facts are then stored into GOM,
as well as used in later workflow composition tasks in order to predict service
performance. GOM itself stores all information about the available application
services in a layered ontology and new applications may be easily added into its
structure by describing their respective domains in ontology, connected to the
general ontology layer developed in K-Wf Grid.

The monitoring infrastructure is integrated into the original grid middleware,
with the Grid Performance Monitoring and Instrumentation Service (GPMIS)
as a processing core. GPMIS receives information from a network of sensors,
embedded into the middleware, application services (where it is possible to in-
strument the services) and into the other K-Wf Grid modules. Apart from
collecting observations for the learning modules, the monitoring infrastructure
is also a comprehensive tool for performance monitoring and tuning, with com-
fortable visual tools in the user portal.

At the bottom lies the grid itself – the application services, data storage
nodes and communication lines. K-Wf Grid has three distinct and varied pilot
applications, which it uses to test the developed modules.

4 Knowledge-Based Flood Prediction Application

The new architecture of what was previously called Simulation Cascade [11] has
been considerably extended (Fig. 2). It is a set of loosely coupled services, with
several possible execution scenarios.

Fig. 2 contains several entities, each of them having its role in our applica-
tion. At the top of the figure is depicted our main data provider, the Slovak
Hydrometeorological Institute (SHMI). SHMI provides us with input data for
the first stage of our application, the Meteorology. In this stage, we employ
two models ALADIN and MM5 for weather predictions, with the latter having
three distinct operation modes (simple, one-way nested and two-way nested).
The predicted weather conditions are used in the Watershed integration stage to

Fig. 2: Service-based flood prediction application.

compute water runoff into the target river. This result is then further processed
in the Hydrology stage, where two models – HSPF and NLC compute river lev-
els for selected geographical points. These levels are then used to model water
flow in the last, Hydraulic stage of the application. Concurrently all important
results are optionally visualized, packaged and displayed to the user – if he/she
requires it.

Apart from the simulation models, preprocessor and associated tools, the
data flow contains also several job packagers and a User Proxy Service. These

services implement our approach towards interactive grid jobs and also toward
in-process user collaboration. The user proxy service may receive a ZIP file
(prepared by a visualization service) with a HTML sub-tree, which is displayed
to a certain user.

The user is then notified of his/her new task (currently by e-mail, later
also ICQ notifications will be implemented) and may view the HTML sub-tree,
included images, animations, tables, etc. and may even react and provide input
by filling out HTML forms (which are further processed by following services
in the application workflow). For each specialized task another user may be
asked to provide input, thus collaborating on a bigger job, requiring expertise of
several users. Apart from enabling seamless multi-user collaboration on a single
workflow, the concept of the User Proxy Service enables (with its asynchronous
notifications) users to leave long-running workflows unattended and return to
them on request, either to view the computed results or to provide some input.

5 Example Application Scenario

When a user logs into the system, he/she starts by using the User Assistant
Agent interfaces (see Fig. 3). He/she enters a text description of the problem
to be computed. This description is then analyzed for known keywords and
detected elements are presented to the user to confirm detected context of the
problem. Free text problem definition is important, when a user starts to work
with the system and wants to define the problem in a way understandable for
automatic service composition.

When some elements of the problem context are confirmed by the user, they
become the semantic representation of user’s problem and composition of the
services can start. After the problem context and semantic description is stated,
the system creates a so-called abstract workflow, consisting only of unknown
input, one high-level, abstract task (transition) and the defined output (the
solution). This abstract workflow is then analyzed, relevant services capable
of creating the solution are found, and a more concrete workflow is created, in
which the abstract transition is replaced by several classes of services. These are
not yet actual service instances and calls, but rather representations of certain
capabilities, which are known to be found in one or more real service instances
(see the yellow boxes in Fig. 3).

At this point, the system is ready to start execution of the workflow. When
the user clicks the play button in the workflow visualization (lower left part of
Figure 6), the system starts looking for real service instances, which are able to
perform the tasks represented by the class transitions. These service instances
are evaluated by the KAA based on their previous monitored behavior, and the
instance believed to perform best (according to a selected metric, for example
speed) is then executed. If the system is unable to find service instance for the
class transition, user’s attention is required. Also, the system is able to recover
from a fault of the selected service instance, and to use another instance, possibly
working one.

Fig. 3: View of the K-Wf Grid portal with a flood prediction workflow initialized.

The User Assistant pane has another important role in the workflow execu-
tion process. To aid user in service selection, input data provision and general
orientation in the world of web and grid services, it provides description of the
workflow elements, if such description (note) has been entered previously by
other user. This is yet another form of experience management, this time based
on the text notes passed between users. These text notes are entered in a form
of a line (or several lines) of text through a button in the User Assistant pane.
After the note is entered, the context of the currently selected element of the
workflow is analyzed, verified by the user and the note is bound to this seman-
tic context. Then the User Assistant is able to find the note later, if a similar
context of a workflow element is present in the workflow, and the note may
be displayed and may possibly guide the user with previous user’s experience.
These notes may be used to describe certain special qualities (or deficiencies) of
some service classes or instances, such as ability/inability to work under certain
conditions or to provide quality results for some tasks.

6 Conclusion

The flood prediction application, and also by it supported virtual organization,
have undergone extensive development in recent 2 years during the K-Wf Grid
project. It has evolved from a single simulation module to a sophistically con-
trolled set of services, based on state-of-the-art community standards. Also the

possibilities for VO support have expanded, with collaboration tools and expe-
rience management now present in the support middleware, and all knowledge
described and stored in an ontology-based repository. Now its users don’t have
to know anything about grid, except very basic essential principles of grid-wide
data management and security. All control is done via graphical interface with
domain-specific names of components; data input and results visualization is
also customizable – usability of the system has been significantly increased.

The application is further evolving. New simulation models are added to it;
new tools for data visualization and data representation are also under develop-
ment. In the future, we hope to integrate the application with other geographical
and meteorological tools and standards, which are widely adopted and appreci-
ated in the hydrometeorological community.

Acknowledgements. This work is supported by projects K-Wf Grid EU RTD
IST FP6-511385, NAZOU SPVV 1025/2004, VEGA No. 2/6103/6, VEGA
2/7098/27.

References

1. FES-WMS: Finite Element Surface Water Modeling System. U.S.G.S.
http://smig.usgs.gov/cgi-bin/SMIC/model_home_pages/model_home?

selection=feswms

2. Tran, V., Hluchy, L., Froehlich, D., Castaings, D.: Parallelizing Flood Model for
Linux Clusters with MPI. LNCS vol. 3019, 2004, Springer Verlag, Berlin, pp.
521-527. ISBN 978-3-540-21946-0.

3. Hluchy, L., Tran, V.D., Habala, O., Simo, B., Gatial, E., Astalos, J., Dobrucky,
M.: Flood Forecasting in CrossGrid Project. LNCV vol. 3165, 2004, Springer
verlag, Berlin, pp. 51-60. I SBN 978-3-540-22888-2.

4. Web Services and Service-oriented Architectures.
http://www.service-oriented.com (accessed December 2006).

5. CrossGrid – Development of Grid Environment for Interactive Applications,
http://www.crossgrid.org (Accessed Sept. 2006)

6. Novotny, J., Russel, M., Wehrens, O.: GridSphere: a portal framework for build-
ing collaborations. In: Concurrency and Computation: Practice and Experience,
Volume 16, Issue 5, 2004, pp. 503-513

7. The Medigrid project home page. http://www.eu-medin.org/projectPage.php?
acronym=MEDIGRID (visited September, 2006)

8. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The Physiology of the
Grid. http://www.globus.org/alliance/publications/papers/ogsa.pdf (Ac-
cessed September 2006)

9. Globus Toolkit Version 4: Software for Service-Oriented Systems. I. Foster. IFIP
International Conference on Network and Parallel Computing, Springer-Verlag
LNCS 3779, pp 2-13, 2005. http://www.globus.org/toolkit/ (September 2006)

10. EU IST 6th FP project K-Wf Grid – Knowledge-based Workflow System for Grid
Applications. http://www.kwfgrid.eu/ (Accessed September 2006).

11. Hluchý, L., Astalos, J., Dobrucký, M., Habala, O., Simo, B., Tran, V.D.: Flood
Forecasting in a Grid Computing Environment. LNCS vol. 3019, 2004, Springer,
Berlin. ISBN 978-3-540-21946-0, pp. 831-839.

Application of K-Wf Grid Technology to

Coordinated Traffic Management

M. Masetti, S. Bianchi, and G. Viano

Softeco Sismat S.p.A., Via De Marini 1- Torre WTC, 16149 Genova, Italy

Abstract

The Coordinated Traffic Management pilot application developed by
Softeco Sismat S.p.A. over the K-Wf Grid (EU IST-2002-511385) mid-
dleware targets the computation of traffic air pollutant emission in a ur-
ban area and has been developed in tight collaboration with the Urban
Mobility Department of the Municipality of Genoa, which provided a
monolithic implementation of the model for the pollutant emission cal-
culations, the urban topology network and real urban traffic data. The
objective is computational-wise challenging and provided a valid test-
bed for the K-Wf Grid middleware, allowing to evaluate and demon-
strate the benefits of the application of the project results to a real
environment as well as to deliver pre-competitive application frame-
works and tools to be exploited in concrete business opportunities. As
required by the internal architecture of the K-Wf Grid middleware, the
CTM application workflow has been divided into several different steps
in order to allow the semi-automatic composition of services and the
definition of a set of ontologies which describe the CTM domain and
feed the system with the information needed for the proper selection
and execution of services.

1 Introduction

The Knowledge-based Workflow System for Grid Applications (K-Wf Grid pro-
ject IST programme 511385) enables the knowledge-based support of workflow
construction and execution in a Grid computing environment. In order to achieve
these objective the system developed is able to compose semi-automatically a
workflow of Grid services, execute the composed workflow application in a Grid
computing environment, monitor the performances of Grid infrastructure and
applications, analyse the resulting monitoring information, capture the knowl-
edge contained in the information by means of intelligent agents and reuse it to
construct more efficient workflows for new Grid applications.

In order to demonstrate the exploitability of the K-Wf Grid middleware, a
Coordinated Traffic Management (CTM) pilot application has been developed
and tested: the main goal of this application is the computation of air pollutant
emission produced by private/public transportation in a urban area.

2 Application

2.1 Functionalities

CTM algorithms apply on a city road network. A city network can be con-
sidered from two different perspectives: a topological view (districts polygonal,
nodes coordinates, distances, areas,...) and a graph view (basically, a directed
acyclic graph or DAG). The main CTM application functionalities implemented,
deployed and tested are:

• Best Route Calculations: given two different city districts, first topological
calculations are applied to compute the internal nodes of start and end
zones, then for each start node the Dijkstra Single Source Shortest Path
algorithm is applied;

• Traffic Flows Calculations (over the best routes, given real traffic data):
main traffic flows are derived from an origin/destination (O/D) matrix:
flows are then split per path taking into consideration path length and
vehicles average speed on path links;

• Air Pollutant Emission Calculations: an existing model (PROGRESS –
PROGramme for Road vehicles EmiSSions evaluation in Genoa, devel-
oped by the University of Genoa) has been ported on the grid middleware.
The model can take care of a massive amount of data and handles up to
8 different vehicles categories and calculates the emissions for four most
critical pollutants (CO, HC, NOx and particulate matter).

• Data Graphical Representation: graphical services are used to plot compu-
tations results in diagrams and charts. Analysis results are also represented
in SVG (Scalable Vector Graphic) format for an easy access from any web
browser.

Each functionality can be considered as a self-consistent scenario and can be
used singularly or as an intermediate step for more complex use cases. In order
to enrich the test bed of the pilot application and to offer the possibility of evalu-
ating some benchmarks, for each aforementioned functionality implementations
with different payloads have been registered into the middleware knowledge base
and made available to the user.

2.2 Test-bed and Software Architecture

The application is composed by a set of SOAP based web services distributed on
different nodes of the K-Wf Grid network (Genoa – 1 node, Innsbruck – several
nodes, Athens – 1 node, Bratislava – 1 node, Cracow – 3 nodes).

Plain SOAP web services proved to be the good solution to provide an early
functional release of services for the first prototype, helping the consortium in
testing and evaluating the K-Wf Grid system. All packages have been developed
in Perl 5 as Perl proved to have a short application deployment time (with
respect to more advanced technologies as Java) and provided several useful base
packages on the CPAN (the worldwide Perl Archive Network). Relying on a base

of ready-made packages was a key factor in respecting the deployment milestones
table.

The application is organized in the following main packages:

• ctm.util: base utility package;
• ctm.util.topology: topology related classes and interfaces;
• ctm.util.graph: graph related classes and interfaces;
• ctm.visum: package containing all the interfaces and classes to handle a

VISUM format network topology description file;
• net.kwfgrid.ctm: package containing application services. The exposed

application services are the following:
– net.kwfgrid.ctm.netFileParser: exposes methods to deal with the

network topology and the computation of the best routes
– net.kwfgrid.ctm.PathLengthCalculator: exposes methods to com-

pute roads and paths lengths
– net.kwfgrid.ctm.TrafficFlowCalculator: exposes methods to com-

pute the traffic flow
– net.kwfgrid.ctm.AirPollutionEmissionCalculator: exposes meth-

ods to compute emissions of pollutants
– net.kwfgrid.ctm.util.Session: exposes methods to provide a trans-

action layer during workflow execution.

Each package (library) has been equipped with a testing environment, whereas
software test coverage is quite good and reaches almost 90% of the code.

2.3 Workflows and Use Cases

The CTM workflow, depending on the specific scenario tackled by the operator,
is dynamically composed by the K-Wf Grid infrastructure: different workflows
can be executed concurrently and each workflow exploits services provided by
different nodes, the selection based upon monitoring data. Also application
data are spread on the different nodes of the grid. Different sub-workflows can
be derived from the main one and can be considered as specific application use
cases:

• Best routes computation between two different city zones;
• Traffic flows computation;
• Traffic flows computation due to a traffic jam (blocked road).

Best route computation involves actually a wide range of complex computa-
tions for which different input data is needed (above all, a topology representa-
tion of the city road network). All the needed computations are performed by
operations exposed by the net.kwfgrid.ctm.NetFileParser web service.

The topology describes basically a directed graph where for each element
(vertex, edge, etc.) coordinates are provided. The Genoa network topology used
for the CTM application provided the following data:

• city zones list: the city has been divided in more than 200 zones and the
application computes the best paths between two city zones;

• zones polygonal: the polygonal represents the zone perimeter;

• network nodes (or vertex): a node represents a road junction or a square
or any discontinuity in the network;

• network arcs (or links, or edges): an arc connects two nodes and is directed;
a two-way road is represented by two different edges. To compute best
paths and traffic flows edges have to come with some added information:

• number of lanes;
• average crossing speed for different vehicle types;
• maximum speed for different vehicle types.

The number of lanes and the average speed are used to give a weight to each
edge, so to come to a weighted graph needed for the best path computation.

To derive the best routes sorted list from one city zone to another the network
must be considered first from a topological perspective and then it is necessary
to compute the list of nodes that belongs to the start and end zone. Traditional
geometry inclusion algorithms are applied at this stage, in particular edge cross-
ing. This computation can be performed in parallel for starting/ending zone and
is performed by the following web services:

• computeCtmStartZonePolyg;
• computeCtmStartNodes;
• computeCtmEndZonePolyg;
• computeCtmEndNodes

After having computed the list of nodes belonging to starting/ending zones,
the best route paths have to be computed. A very common task for a weighted
graph is to find the shortest (lightest) possible path between vertices, applying
single-source shortest path (SSSP) or all-pair shortest path (APSP) algorithms.

2.4 Algorithms

Given a graph and a vertex (“source”), the single-source shortest paths (SSSP)
are the shortest possible paths to all other vertices. The all-pairs shortest paths

(APSP) problem is the generalization of the single-source shortest paths: instead
of starting always from a specific vertex and choosing always the lightest path,
all possible paths are covered and all path lengths are calculated.

Fig. 1: A graph and its SSSP.

Fig. 2: A graph and its APSP.

There are several levels of difficulty: are there only positively weighted edges,
or are there also negatively weighted edges, or even negatively weighted cycles?
A negatively weighted cycle (negative cycle) is a cycle where the sum of the
edge weights is negative. Negative cycles are particularly nasty because looping
causes the minimum to just keep getting “better and better” and ignoring nega-
tively weighted cycles would mean choosing an arbitrary definition of “shortest”.
Shortest paths are then found by repeatedly executing a process called relax-

ation: if there is a better (shorter) way to arrive to a vertex, lower the current
path length minimum at that vertex. The act of processing an edge this way is
called edge relaxation.

Fig. 3: Relaxing the edge a-c lowers the weight of vertex c from 5 to 4.

The Dijkstra’s single-source shortest paths algorithm can be used only if all
the edges are positively weighted and has been fully tested on the available
network before being used in the project. If the graph weights do not vary,
the relaxed network could be saved and reused, this is not done and relaxing
computation is forced each time to stress the grid test-bed.

The best routes found are plotted on a SVG format file to be presented to
the user using the K-Wf Grid user portal.

Fig. 4: Visualization of results in SVG format: paths.

A key step in the use case implemented by the CTM application is the se-
lection of a broken path, simulating the computation of pollutants emissions for
critical situations (a road broken for maintenance or a car accident).

Once derived the best paths, the O/D (origin/destination) matrix is generally
used to derive traffic flows for each path. O/D matrices represents flow data for
each start/end zone in a given time shift. The flows are split among all possible
paths taking into consideration the number of lanes and the average speed.

The formula to derive pollutants emission for a given time shift and a given
vehicle type is the following:

emission = number of vehicles * distance * emission factor

where the emission factor is derived using a specific emission model. Emission
factors are computed only for hot engines and are the result of a field monitoring
lasted three years and conducted by the municipality of Genoa. Results are then
included in SVG files for proper visualization.

Fig. 5: Visualization of results in SVG format: pollution emissions.

3 Achievements and Innovation

3.1 Overall Benefits

With respect to a traditional market solution, the CTM application exploits all
the advantages that come from the adoption of a grid of resources instead of a
classical monolithic solution:

• parallel and seamless task execution: the middleware is able to run inde-
pendent tasks in parallel and on different grid nodes whenever possible,
exploiting the power of the grid;

• computations potentially dispersed on different grid nodes;
• dynamic task execution depending on resource monitoring: performance

monitoring and feedback information is used to constantly tune task exe-
cution for a better use of grid resources.

3.2 K-Wf Grid Value Added

Furthermore, the application benefits from the adoption of the K-WF Grid mid-
dleware, raising then from common grid applications:

• Semi-automatic application workflow construction: using the domain, ser-
vice and data application knowledge, the middleware is able to compose
the best workflow that fits the user needs;

• A new application development model: provided all the services to cope
with each application task, the application workflow is built by the mid-
dleware; the user can anyway decide to save and reuse already composed
workflows and re-compose them at some events (new services deployed,

changes in the grid of resources, new scenarios). A derived advantage with
respect to monolithic market solutions is the possibility to cope with new
scenarios that can arise in the traffic management domain;

• Services potentially automatically exploited in different domains: the more
services are described in the middleware knowledge base, the more scenar-
ios are reachable, as they can be reused independently and self-consistently.

3.3 Potential Application Scenario

The introduction of the aforementioned benefits in a complex domain such as
the CTM application can be appreciated considering a real scenario, for exam-
ple the estimation of the consequences of closing a downtown road on the daily
traffic and on the air pollution. A conventional approach in fact would usually
consist in performing manually several simulations in order to estimate the con-
sequences of different scenarios and control measures. An experienced traffic
manager would edit the inputs, calibrate the parameters, launch the simulation,
collect the results, perform the analysis, come to conclusions and plan actions.
All these activities would be usually performed sequentially, on a single PC,
with manual data management and offline evaluations - a waste of time and re-
sources. K-Wf Grid fosters and supports the transition from a work organisation
modelled on workflow based on “humans” which perform tasks by means of a
number of monolithic applications, toward a “virtual workflow” implemented by
a middleware with the transparent orchestration of grid services.

4 Conclusions

The CTM application has been a valid test bed for the K-WF Grid middleware
and helped to cope with and solve middleware weaknesses that arose in the first
stages of application development.

The application has been helpful to test core middleware functionalities and
the robustness of the overall system. Currently CTM services are deployed on
grid nodes at Softeco Sismat and University of Innsbruck premises.

As a result of the collaboration between an industrial IT partner and a poten-
tial real end user, the application also allowed an early evaluation of the impact
of the adoption of grid-based and K-Wf Grid-powered solutions in a domain
which actually offers interesting business possibilities.

This research has been partially supported by the K-Wf Grid project (EU
IST-2002-511385). The authors thank the Mobility Department of the Munici-
pality of Genoa for the support in domain analysis and application conception,
design and evaluation.

The Potentials of Knowledge-Based Workflows

and Grid Infrastructures in an ERP

Environment: The K-Wf Grid Experience

Pantelopoulos Stelios, and Kalaboukas Konstantinos

Singular Logic, Al.Panagouli & Siniosoglou, 142 34, N.Ionia, Greece
emails: {spantel, kkalam}@singular.gr

Abstract

Current enterprise environment is characterized by rapid changes and
fuzzy networks of inter-enterprise correlations and dependencies. Thus,
effective decision making, which is strongly related to the company
competitiveness, requires computation- and data- intensive tasks due to
the complexity of the supporting algorithms and the massive storage of
enterprise data. To solve computation- and data- intensive tasks and to
integrate back-office business processes, we propose, in this paper, the
utilization of knowledge-based workflow systems and grid technologies
over service oriented enterprise infrastructures. Finally, we present the
experience gained from the preparation and the execution of ERP-based
workflow scenarios in a grid computing environment.

1 Introduction

Most enterprises are under mounting pressure to adopt and deploy reliable, high
performance Enterprise Resource Planning (ERP) integrated solutions to gain
benefits concerning the strategic planning and the operational and management
control [1] [2]. Such enterprises are expected to find ways to enhance their com-
petitiveness by offering new or improved services a) to their employees, who need
better and faster access to business information; and b) to their customers who
demand faster response to their requirements and improved quality of service
and support.

Moreover, from the technological point of view, Service Oriented Architecture
(SOA) is the de-facto technological basis for implementing state of the art busi-
ness applications and platforms, including ERP systems [3]. The development
and deployment of Service Oriented Business Applications, which constitutes a
set of independently running services communicating with each other in a loosely
coupled message-based manner, as well as the publishing of Web Services, have
already made headway within large organizations, the technology will start filter-
ing down to medium and small companies (SMEs) and will expand into supply
chains [4].

As current enterprise environment is characterized by rapid changes and fuzzy
networks of inter-enterprise correlations and dependencies, the effective decision
making, which constitutes crucial factors concerning the company positioning
and competitiveness in the enterprise environment, requires computation- and

data- intensive tasks due to the complexity of the supporting algorithms and the
massive storage of enterprise data. In addition, the enterprise employees, who
are the real ERP users, demand fast access to machine processed enterprise data
so as to support efficiently and execute effectively back-office business processes,
leading to the faster delivery of vital information, to the optimization of the
enterprise performance and to the enhancement of customers’ satisfaction.

To solve computation- and data- intensive tasks and to integrate back-office
business processes, we propose the combination of knowledge-based workflow
systems with grid computing over service oriented enterprise infrastructures.
The utilization of grid technology leverages the notion of SOA, by providing grid
enabled business services, while the introduction of knowledge-based workflows
facilitates the dynamic, semi-automated composition and optimized execution of

business processes, delivering and ensuring high ERP and database throughput
and performance at service levels.

In this paper, we document and present the experience and the lessons learnt
gained from the customization, deployment and validation of an innovative,
so called K-Wf Grid platform, developed in the frame of the EC co-funded
IST project entitled “Knowledge-based Workflow System for Grid Applications”
(K-Wf Grid) [5], in a testing ground in the business sector. The pilot application
of the K-Wf Grid project aimed to enable the knowledge-based support of ERP-
oriented workflow construction and execution in a Grid computing environment.

The structure of this paper is as follows: in the following section, we present
an overview and the architecture of the developed K-Wf Grid system, while
Section 3 identifies data- and computational- intensive ERP workflow-based sce-
narios to be utilized as K-Wf Grid pilot applications. The preparation and the
execution of the ERP demonstrator are described in Section 4. Finally, Section 5
presents the results and the conclusions of ERP-related experiments undertaken,
as well as the potentials of the K-Wf Grid platform in business environments.

2 The K-Wf Grid Architecture

We envisioned the future Grid as a large, distributed collection of Grid services,
as well as more general Web Services [5]. These services serve different purposes:
from data storage, general processing, network transfer, specialized simulations,
data processing services to sophisticated middleware services such as scheduling,
fault tolerance, monitoring and performance analysis. Moreover, the services are
partly complementary and partly redundant, with competition between similar
services or their groups. The K-Wf Grid system allows customized development
of Grid applications, enabling the user to control the important functionality
and quality of service parameters.

Figure 1 presents the overall layered architecture of the K-WfGrid system.
The architecture is composed of four horizontal layers (A, B, C, D) and the
vertical knowledge layer (K). The horizontal layers are the Web Portal (A), the
Grid Application Building layer (B), the Grid Application Control layer (C),
and the Low Level Grid Middleware layer (D). Each horizontal layer communi-

cates only with the proximate layers so single layers can be modified or replaced
without changing the whole system. The Web Portal (A), for example, receives
data from the Knowledge layer (K) and communicates interactively with the
components of the Grid Application Building layer (B) but does not have direct
connection to the Low Level Grid Middleware (D).

Fig. 1: The K-Wf Grid System Architecture.

A user accesses the system through the Web Portal (A), which contacts the
User Assistant Agent (UAA), responsible for creation of a user workspace, mon-
itoring user actions and contacting other parts of the system when necessary.
The system enables the user to interact with other users and provides support
for developing workflow-based Grid applications. Such applications consist of a
set of Grid services that interact with each other via standard protocols such
as SOAP. An associated UAA contacts the tools located in the Grid Applica-
tion Building framework (B), i.e. the Automatic Application Builder and the
Workflow Composition Tool that constitute knowledge-based semi-automatic
modelling services, able to propose known solutions to problems solved in the
past by selecting appropriate services and interconnection patterns of interest.
When a workflow description of the application is constructed, the workflow layer
consecutively contacts the Grid Workflow Execution Service (C), consisting of a
Grid Service Invocation and Control and a Grid Performance Analysis Service.

While Grid Service Invocation and Control also serves as an intelligent proxy for
Grid resources in layer D, capable of performing observations of the resources,
the Grid Performance Analysis Service works together with one or more Grid
Performance Monitoring Services, located directly in layer D (thus being regu-
lar OGSA-compliant services) and gathers monitoring information derived from
instrumentation inside the resources themselves.

The Knowledge layer K is comprised of two main parts, i.e. the Grid Or-
ganization Memory and the Knowledge Builder Agent. The Grid Organization
Memory stores all observed, measured, directly entered or otherwise extracted
data and makes it available to intelligent components of K-Wf Grid on layers
A, B and C. The Knowledge Builder Agent is responsible for processing the
measured and observed data for knowledge extraction and also for processing
external data sources, such as UDDI registries or WSDL documents.

3 ERP-Based Workflow Scenarios

Taking into consideration the business lifecycle and the everyday activities of a
typical enterprise of the rapidly growing Fast Moving Consumer Goods (FMCG)
industry, encompassing a huge range of products and services in manufacturing,
distribution and retailing, three crucial ERP usage scenarios have been identified
regarding the competitiveness and the total performance of the enterprise.

The first scenario, so-called “Product Cost Analysis”, concerns the calcula-
tion, real-time, of the cost of each product type traded by the enterprise, based
on the long-term product orders made by the enterprise (Fig. 2). Imagine that
the FMCG enterprise trades over than five thousand different product types,
and places over ten orders per product type and per month to its suppliers –
which makes us over fifty thousand orders per month – purchasing, in the frame
of each order, products in different price and shipping details, e.g. cost. In case,
the FMCG enterprise decides to adopt a pricing policy that implies a standard
profit rate per product type (e.g. the enterprise should sell a product with 30%
profit over the calculated mean cost), it is obvious that the everyday or day-by-
day calculation of the final price of each product type constitutes a really data
intensive workflow-based task.

The second scenario, entitled “Orders Management and Approval”, concerns
the approval (of the rejection) of all customers’ orders submitted to the enterprise
based on the financial reliability of the customers and the availability of the
selected products.

Let’s imagine that the FMCG enterprise receives daily over than ten thousand
orders, each of them containing a set of ten product types on average, from over
five thousand customers. First of all, the ERP user has to check the financial
reliability of all customers having placed an order, taking into account customer’s
credit, the order’s total cost, as well as a predefined acceptance threshold, in
order to proceed in the acceptance of the order. In case, the financial reliability
of the customer is proved, the ERP user, so as to finally accept the order, should
check the availability of the product types and quantities listed in the specific

Fig. 2: The “Product Cost Analysis” problem overview.

order either in the enterprise inventory, which could be the real time aggregated
result of the enterprise warehouses stock, or in the pending enterprise orders
places to its suppliers, which are scheduled to be delivered in predefined time
margins. It is obvious that the everyday management and final approval of each
customer’s order constitutes also a data intensive workflow business application.

Finally, the third ERP-based scenario (Fig. 3), entitled “Products Stock
Management”, being the most critical one, concerns the calculation of the re-
quired quantities for each product type, traded by the enterprise, to be ordered
in a weekly/monthly basis, so as the future products stock level in the enterprise
warehouses to remain above a predefined, safe level.

Fig. 3: The “Products Stock Management” problem overview.

The “Products Stock Management” scenario utilizes several time-series anal-
ysis and prediction models (i.e. both the Single and the Triple Exponential
Smoothing models [6]), to predict the forthcoming sales, and calculates the
next-period orders of each product type traded by the enterprise, based on the

long-term product sales and stock management algorithms. This module is prac-
tically a module of the Data Warehouse management component of the ERP.
Taking into account the fact that a typical FMCG enterprise trades over than
five thousand different product types, and places over ten orders per product
type and per month to its suppliers, which makes over fifty thousand orders per
month, as well as the computational needs of complex forecasting algorithms,
the given “Products Stock Management” scenario is proved to be both a data-
and a computational- intensive ERP-based service.

The process complexity characterizing all these above described ERP-based
use cases require the introduction of knowledge-based workflows, to facilitate the
composition and optimized execution of business processes, while grid infrastruc-
ture is required to address both data- and computational- intensive needs of the
selected workflow-based applications. The K-Wf Grid platform will be deployed
and validated through these three identifies use cases providing the ERP users,
e.g. accountants, sales and finance managers, who has no experience in grid
computing and workflow management systems, with an integrated tool and user
friendly interface to execute parameterized, scenario-specific, optimized business
processes.

4 Utilization of the K-Wf Grid Platform

Once the selection of either data- or computational- intensive ERP workflow-
based applications, among a set of pre-identified ERP-based use cases, we have
developed and exposed web service resources to the K-Wf Grid system, based on
the pre-selected application scenarios, so as to facilitate the utilization of ERP
applications by the K-Wf Grid system, which included a cluster of machines
hosting the GT4 toolkit constituting the grid infrastructure (Fig. 4).

The utilization of the grid infrastructure in the frame of usage scenarios is
summarized as follows: a) the data space of the ERP deployed in the enterprise
could be bound as Grid Resource in the deployed grid infrastructure, in order
to avoid continuous and computational intensive database query each time the
above defined process is executed; b) the execution of the above defined use cases
could be parallelized utilizing the computational resources registered in the de-
ployed grid infrastructure (e.g. the management of 10000 customers’ orders daily
could be executed in 30 computers constituting the grid infrastructure, rather
than in a single server); and c) the execution of the above defined workflows could
be parallelized in the process space, (e.g. the check of the customer’s Financial
Reliability and the check of the availability in stock of the products placed in
customer’s order constitute non-interrelated services and could be executed in
parallel).

5 Conclusions

The adoption and deployment of K-Wf Grid in enterprise environments, char-
acterized by complex intra- and inter- organizational business processes that

Fig. 4: The ERP Pilot Application.

orchestrate business-driven services deployed by customizable business software
systems, scale existing systems horizontally using a grid-enabled service-oriented
architecture.

More specifically, K-Wf Grid approach and platform a) allows semantically-
assisted search, discovery and selection of appropriate tasks/services, stored in
services repository that could typically contain some hundreds of services, with
their desired functionality in order to compose a business-driven e-workflow and
to establish connections among these tasks (control and data flow); b) allows the
user to identify, at design time, the operational metrics of discovered services
and grid resources, including timeliness, quality of products delivered, cost of ser-
vice, and reliability, facilitating, thus, the composition of optimized grid-enabled
e-workflows; c) supports the semi-automated generation, storage, and reuse of
business e-workflows with a level of parameterization; d) shortens calculation
time of data- and computation- intensive business-driven ERP-based processes,
and improves enterprise competitiveness delivering instantly high quality compu-
tations; and e) enables simple ERP users, with no experience in grid computing
and workflow management, to benefit from the emerging Grid-enabled Service
Oriented Computing by offering user-friendly interfaces to a complex Grid-based
environment.

References

1. E-Business Insight – ERP, CRM and Supply Chain Management. (11th March
2005). ERP Benefits – Operational Control, Management Control and Strate-
gic Planning. Retrieved from http://www.sysoptima.com/erp/erp_benefits.php

(15th September 2006)

2. State of Iowa, ERP Steering Committee. (2001). ERPN – Enterprise Resource
Planning Newsletter. April 2001, Vol. 1, Issue 2. Retrieved (15th September 2006)
from http://www.infoweb.state.ia.us/newsletter/erp/erp_apr.pdf

3. Bouras, A., Gouvas, P., Friesen, A., Pantelopoulos, S., Alexakis, S., Mentzas, G.
(2006). Business Process FUSION based on Semantically-enabled Service Orien-
ted Business Applications. In the proceedings of the 2nd Workshop on Web Ser-
vices Interoperability (WSI 2006), 2nd International Conference I-ESA 2006 for
Interoperability for Enterprise Software and Applications, 20-24 March, Bordeaux,
France.

4. IBM Whitepaper. (2004). Service-Oriented Architecture and Web Services: Cre-
ating Flexible Enterprises for a Changing World. October 2004. Ziff Davis Media
Custom Publishing.

5. Knowledge-based Workflow System for Grid Applications (K-Wf Grid IST
project). Retrieved from http://www.kwfgrid.eu/ (15th September 2006).

6. National Institute of Standards and Technology (NIST) / SEMATECH,
e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/, (21st August 2006).

Software Engineering Aspects of K-WfGrid

Marian Bubak1,2, Maciej Malawski1, Piotr Nowakowski2, and Steffen Unger3

1 Institute of Computer Science, AGH Academy of Mining and Metalurgy,
al. Mickiewicza 30, 30-059 Kraków, Poland

2 ACK Cyfronet AGH, ul. Nawojki 11, 30-950 Kraków, Poland
3 Fraunhofer FIRST, Kekuléstraße 7, 12489 Berlin, Germany

Abstract

The aim of this paper is to present aspects of software engineering
in a large-scale European Grid research project, using the K-WfGrid
project as an example. This paper presents the considerations which
should be taken into account when establishing, carrying out and
disseminating the results of a joint scientific research enterprise.

Keywords: Software engineering, Grid, European research

1 Introduction

The paper describes in detail the quality assurance methodology and guiding
rules together with processes supporting their realization in all phases of the
software development process, from user requirements analysis to integration
testing. K-WfGrid software engineering methodologies have been set forth in the
the K-WfGrid Quality Assurance plan, which bases on both accepted standards
and previous experience with drafting integrated QA procedures for CrossGrid
(such as the IEEE-compliant SRS templates, Design Specifications and the de-
liverable review procedure), and on the experiences of other affiliated European
Grid projects, most notably the DataGrid Project [2] and GridLab [3]. IEEE
template 730-1989 (see [4]) was used for the creation of the K-WfGrid QAP.

2 The Aims and Scope of K-WfGrid

An important yet often neglected aspect of European and other international
research projects is the proper application of software engineering methodologies,
relevant for such large-scale distributed scientific collaborations. This paper
aims to present some of the methods involved in successful management and
control of software engineering in a Grid development project, on the example
of Knowledge Workflow Grid (K-WfGrid) which is a FP6 IST undertaking.

K-WfGrid addresses the need for a better infrastructure for the future Grid
environment. The Grid as a vast space of partially-cooperating, partially-com-
peting Grid services is a very dynamic and complex environment. In order to
address the complexity in using and controlling the next generation Grid, the
K-WfGrid consortium adopted the approaches envisioned by semantic Web and
Grid communities in a novel, generic infrastructure. The K-WfGrid system as-
sists its users in composing powerful Grid workflows by means of a rule-based

expert system. All interactions with the Grid environment are monitored and
evaluated. The knowledge about the Grid itself is mined and reused in the
process of workflow construction, service selection and Grid behaviour predic-
tion. Workflows are dynamic and fault-tolerant beyond the current state of the
art. The K-WfGrid system is generic by providing domain-independent system
components, freeing the user from the burden of complex Grid usage and mainte-
nance. Specific application knowledge is added in a customization phase carried
out by system integrators including SMEs. These abilities are applied to three
different application domains regarding scientific simulations (flood forecasting
simulation) as well as industrial applications (ERP and traffic management).
K-WfGrid contributes to strengthen SMEs and create progress by aggregating
SME contributions with those of research organizations and global players. Two
industrial SMEs – Softeco and LogicDIS – are involved in the project, enabling a
strong focus on SME research and application, including transferability of results
to real-world practice and strengthening of the European SME landscape. The
achievements of K-WfGrid help bring the benefits of a global computation and
information environment to a broader user space beyond the computer science
community.

K-WfGrid was scheduled for two and a half years, officially starting in Septem-
ber 2004 and lasting until March 2007. The Project was divided into four distinct
phases, as exemplified by its milestones:

• Initial phase, including requirement definition and merging of specifications
(Months 1-6),

• Prototyping phase, centered on the development of a functional system
prototype (Months 7-15),

• Refinement phase, focused on improving the prototype and implement-
ing additional functionality, in preparation for a complete, stable release
(Months 16-24),

• Testing and evaluation phase (Months 25-30).

Each phase was set to produce different artifacts, expressed in the form of
deliverables, and each will require different approaches to quality assurance. In
addition, each of the interim development phases will conclude with the delivery
of a new software release. The QA procedures applicable to each phase of the
Project were fully described in the Quality Assurance Plan, presented in Fig. 1.

Due to the scope and structure of the project a custom software engineering
approach has been worked out by the Project consortium, basing on accepted
software development methodologies [1] but also taking into account the specifics
of developing software within an international collaboration and their impact on
such processes as software design, prototyping, testing and quality assurance.

Software engineering in K-WfGrid covers the following aspects:
• K-WfGrid quality objectives and their role in software development,
• organizational structure of the project, including project Work Packages

(WPs), project tasks (the basic organizational unit of the project) and
project management, project documentation expressed in the form of de-
liverables and publications produced by K-WfGrid partners. This concerns

Fig. 1: The Architecture of K-WfGrid, as defined during the final implementa-
tion phase of the Project.

both the physical layout of K-WfGrid deliverables and the deliverable sub-
mission and acceptance procedure, involving the Internal Review Board
and Quality Assurance. An official K-WfGrid Publication Policy is also
defined,

• generic conventions, standards and metrics which the Project adheres to,
including: tools used within K-WfGrid (for publication as well as program-
ming),

• coding conventions for all programming languages used within K-WfGrid,
• the Central Repository and its means of usage,
• the release preparation process,
• other standardized conventions to be followed,
• the K-WfGrid software development process and the role of QA procedures

at each step of the Project’s timeline. This involves both the technical
aspects of the project as well as the reporting that goes with it and is
divided into the following sections:

– the software requirements review (initial phase),
– the software design review (first development phase),

– unit testing procedures (all development phases),
– release and prototype reviews (all development phases),
– testbed QA (all development phases),
– publication reviews (all phases),
– managerial reviews (all phases).

• the K-WfGrid corporate identity as a set of rules, captions and graphical
elements to be used in official Project publications.

3 The K-WfGrid Quality Assurance Plan

In order to maintain a firm grasp of the course and aims of the K-WfGrid
project, as well as exert control over how these objectives are pursued, a Quality
Assurance Plan had to be developed, to provide quality support to partners,
with respect to the main Project characteristics.

The plan defined the following Quality Objectives for the Project:

• All deliverables are to be handled in on time and subjected to a review
process, so that their contents can be found satisfactory both by Project
Management and by the European Commission which is entitled to review
K-WfGrid documentation.

• All K-WfGrid Partners should follow the same set of conventions and met-
rics, which adhere to industry standards regarding good design and coding
practices, as well as reviews and internal audits of the generated code.

• The code produced by the K-WfGrid technical tasks (i.e. Workpackages
1-5) should be handed in on time (as specified by the release workplan
issued by Project Management) and perform as specified by their design
(which is also subject to approval).

• All reviews are to be conducted at the scheduled times and their results
are expected to be satisfactory, as defined in the objectives of each review.

3.1 Project Management

Fig. 2 depicts the central management of K-WfGrid. As shown in the picture,
the main managerial bodies of the Project included the Project Coordinator,
the Project Coordination Committee (PCC) and the Technical Board (TB).

The Project Coordination Committee coordinated the Project. The PCC
assumes overall responsibility for liaisons between the Partners in relation to the
Project, for analyzing and approving the results, for proper administration of the
Project and for implementation of the provisions contained in the Consortium
Agreement.The Technical Board supervised the technical and scientific progress
of the Project in compliance with the Work Plan and the milestones defined. The
TB also coordinated the activities within the different workpackages, analyzing
emerging technical problems or time delays and report to the PCC, including
the provision of decision alternatives.

Fig. 2: The K-WfGrid Project Management hierarchy.

3.2 Quality Assurance Officer

As mentioned before, the Project involved a separate Quality Assurance work-
package. The Quality Assurance Officer of the Project reported to the Project
Coordination Committee and performed the following functions with respect to
the Project’s QA objectives:

• established QA procedures to be followed by the entire Consortium, with
respect to deliverable preparation, usage of tools, standards conformance,
reporting schemes, ensuring the validity of Project code and issue identifi-
cation,

• instituted a proper internal review process for Project deliverables,
• performed technical reviews of Project documentation and deliverables,

with particular emphasis on conformance with this Quality Assurance
Plan,

• identified Project-related risks and provided relevant information to the
Project Coordination Committee in a timely and accurate manner, so that
mitigation strategies could be implemented.

3.3 Project Corporate Identity

In order to assert K-WfGrid corporate identity, a set of document templates
were provided and all K-WfGrid partners used the available K-WfGrid identity
characteristics, namely:

• standardized document templates, both for deliverables and other docu-
ments,

• standardized transparency templates,
• standardized presentation templates (in PowerPoint),
• the K-WfGrid logo,
• uniform color schemes for printed material and presentations,
• references to the European Union as sponsoring the Project.

4 Quality Assurance – Review Procedures

Reviews are the means by which Quality Assurance is enforced in any collabora-
tion. Hence, in order to facilitate reviews of K-WfGrid artifacts (deliverables),
the following procedures were established. Figure 3 presents the QA plan ap-
plied to each technical deliverable before shipping it to the K-WfGrid Brussels
office. By “technical deliverable” we mean all deliverables that were required
to undergo such a process, save the managerial reports to the European Com-
mission (i.e. Periodic Activity Reports, Interim Reports, Managerial Reports,
Financial Reports, the Final Report etc.)

Fig. 3: Deliverable review process.

In order to facilitate deliverable review and institute the appropriate internal
review mechanisms, as stipulated in the Technical Annex, an Internal Review
Board was established. This Board consisted of a manager and a pool of potential
reviewers, drawn from members of the Project’s Technical Board. For each
deliverable, the following process took place:

• The partner(s) responsible for the deliverable prepared a draft version
approximately one month before the deliverable was due.

• The deliverable was submitted to the internal review process (as described
below), under the guidance of the Internal Review Board manager. Two
to three weeks were allowed for this process.

• For each document, the Internal Review Board manager assigned two or
three reviewers to review the particular deliverable.

• The reviewers inspected the document’s contents for conformance with the
requirements of the Technical Annex. Each reviewer then issued a stan-
dard Internal Review Form (IRF), which detailed the results of the review
and suggested changes required before the final version of the document
was submitted. The IRFs were handed back to the IRB manager with a
recommendation on whether the deliverable should be accepted, accepted
with changes or rejected. The IRB manager made a final decision on the
deliverable’s acceptance or rejection. The IRFs were then provided to the
partner responsible for the deliverable being reviewed.

• When the review was complete, the document’s author introduced the
necessary changes to the document and filled out a standard Corrective
Action Form (CAF), which listed all the alterations called for by the In-
ternal Review Forms prepared earlier. If the document was not approved,
the author needed to rework and resubmit it for a second internal review.

• The updated deliverable was submitted to the Project’s Quality Assurance
Officer for editorial formatting and proofreading. One week was allowed
for this process.

• Once the deliverable passed the QA stage, it was delivered to the Project
Coordinator, who approved it and submitted it to the Project Office in
Brussels.

5 Conclusions Regarding K-WfGrid Software Engineering
and QA Aspects

The two-and-a-half year course of K-WfGrid ended in successful completion of
the final Project Review in October 2006. Following the requirements of the
Technical Annex, the Consortium prepared a number of documents and reports,
all of which were accepted by the European Commission as having accurately
depicted the final outcome and status of the Project. We therefore conclude that
the safeguards and obligations specified by the Project’s Quality Assurance Plan
accurately reflect the requirements of multinational scientific collaborations as
well as European research projects.

Acknowledgements. This research has been partially supported by the K-
WfGrid project (EU IST-2002-511385). The authors thank the K-WfGrid Con-
sortium for feedback received during the design and development process.

References

1. Eric J. Braude, Software Engineering: An Object-Oriented Perspective (John Wi-
ley & Sons, Inc., 2001)

2. The DataGrid Project Management Website; http://eu-datagrid.web.cern.ch/
eu-datagrid/WP12/default.htm

3. The GridLab Project Quality Assurnce Plan, available at http://www.gridlab.

org/Project/Deliverables.html

4. The IEEE Software Engineering Standards catalog; http://standards.ieee.org/
catalog/olis/arch_se.html

Author Index

B

Babik, M. 74
Balis, B. 60
Balogh, Z. 114
Bianchi, S. 146
Brunner, P. 48
Bubak, M. 1, 25, 60, 162

D

Dutka, L. 31

F

Fahringer, T. 39, 48

G

Gatial, E. 131
Gubała, T. 25

H

Habala, O. 138
Harezlak, D. 25
Hluchý, L. 74, 114, 122, 131, 138
Hoheisel, A. 13

J

Janusz, M. 106

K

Kalaboukas, K. 154
Kitowski, J. 31, 74, 82, 90, 98,

106, 114
Kryza, B. 74, 82, 90, 131
Kuta, M. 98

L

Laclavík, M. 122, 131
Linden, T. 131
Łabno, B. 60

M

Majewska, M. 74, 82
Malawski, M. 25, 162
Mališka, M. 114, 138

Masetti, M. 146
Miłoś, T. 98

N

Nae, V. 48
Natanek, S. 31
Nguyen, G. 131
Nowakowski, P. 1, 162

P

Palacz, B. 98
Pantelopoulos, S. 154
Pieczykolan, J. 74, 90
Polak, S. 98

S

Samborski, R. 48
Simo, B. 131
Słota, R. 74, 98, 106, 114
Šeleng, M. 114, 122

T

Toth, A. 74
Truong, H.-L. 48

U

Unger, S. 1, 162

V

Viano, G. 146

W

Wach, J. 90
Wieczorek, M. 39

Z

Zieba, J. 106, 114
Zuzek, M. 90

	papers-t2_wstepne.pdf
	papers-t2_1-18+index+str.pdf
	0_0_Bubak.pdf
	1_4_Hoheisel.pdf
	2_5_Gubala.pdf
	3_6_Dutka.pdf
	4_7_Wieczorek.pdf
	5_8_Truong.pdf
	6_9_Balis.pdf
	7_10_Kryza.pdf
	8_27_Kryza.pdf
	9_11_Kryza.pdf
	10_43_Kuta.pdf
	11_12_Slota.pdf
	12_13_Balogh.pdf
	13_3_Laclavik.pdf
	14_2_Gatial.pdf
	15_14_Habala.pdf
	16_15_Masetti.pdf
	17_16_Pantelopolous.pdf
	18_17_Nowakowski.pdf
	IV-Index-t2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002000d>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002000d>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033003a0032003000300033002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d00330020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002c00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002000d>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e000d>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

